β-NaVOPO4 Obtained by a Low-Temperature Synthesis Process: A New 3.3 V Cathode for Sodium-Ion Batteries

被引:59
作者
He, Guang [1 ]
Huq, Ashfia [2 ]
Kan, Wang Hay [1 ]
Manthiram, Arumugam [1 ]
机构
[1] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
[2] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
关键词
POSITIVE-ELECTRODE MATERIALS; CARBON-COATED NA3V2(PO4)(3); CRYSTAL-STRUCTURE; LITHIUM INSERTION; ELECTROCHEMICAL PERFORMANCE; SOLVOTHERMAL SYNTHESIS; PHOSPHATES; LIVOPO4; SYSTEM; MATRIX;
D O I
10.1021/acs.chemmater.5b04992
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Vanadyl phosphates (VOPO4) represent a class of attractive cathodes in lithium-ion batteries. However, the exploration of this type of materials in sodium-ion batteries is rare. Here, we report for the first time the synthesis of orthorhombic beta-NaVOPO4 by first chemically extracting lithium from beta-LiVOPO4 and then inserting sodium into the obtained beta-VOPO4 by a microwave-assisted solvothermal process with NaI, which serves both as a reducing agent and sodium source. Intermediate NaxVOPO4 compositions with x = 0.3, 0.5, and 0.8 have also been obtained by controlling the amount of NaI in the reaction mixture. Joint Rietveld refinement of synchrotron X-ray diffraction (XRD) and neutron diffraction confirms that the fully sodiated beta-NaVOPO4 is isostructural with the lithium counterpart beta-LiVOPO4. Bond valence sum maps suggest that sodium ions possibly diffuse along the [010] direction in the lattice, similar to the ionic conduction pathway in beta-LiVOPO4. Although the initial discharge capacity is low due to the protons in the structure, it steadily increases with cycling with a long plateau at 3.3 V. Ex situ XRD data of cycled beta-VOPO4 and beta-NaVOPO4 electrodes confirm the reversible reaction in sodium cells involving the V4+/V5+ redox couple.
引用
收藏
页码:1503 / 1512
页数:10
相关论文
共 48 条
[1]   Crystal structure of a new polytype in the V-P-O system:: is ω-VOPO4 a dynamically stabilised metastable network? [J].
Amorós, P ;
Marcos, MD ;
Roca, M ;
Alamo, J ;
Beltrán-Porter, A ;
Beltrán-Porter, D .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2001, 62 (08) :1393-1399
[2]   Vanadyl phosphates Of VOPO4 as a cathode of Li-ion rechargeable batteries [J].
Azmi, BA ;
Ishihara, T ;
Nishiguchi, H ;
Takita, Y .
JOURNAL OF POWER SOURCES, 2003, 119 :273-277
[3]  
Bordes E., 1987, CATAL TODAY, V1, P499, DOI DOI 10.1016/0920-5861(87)85003-4
[4]   Soft chemistry synthesis and characterization of layered Li1-xNi1-yCoyO2-δ (0 ≤ x ≤ 1 and 0 ≤ y ≤ 1) [J].
Chebiam, RV ;
Prado, F ;
Manthiram, A .
CHEMISTRY OF MATERIALS, 2001, 13 (09) :2951-2957
[5]   High-Voltage Pyrophosphate Cathode: Insights into Local Structure and Lithium-Diffusion Pathways [J].
Clark, John M. ;
Nishimura, Shin-ichi ;
Yamada, Atsuo ;
Islam, M. Saiful .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (52) :13149-13153
[6]   Calculations of Li-Ion Diffusion in Olivine Phosphates [J].
Dathar, Gopi Krishna Phani ;
Sheppard, Daniel ;
Stevenson, Keith J. ;
Henkelman, Graeme .
CHEMISTRY OF MATERIALS, 2011, 23 (17) :4032-4037
[7]   Phase transition induced by lithium insertion in αI- and αII-VOPO4 [J].
Dupré, N ;
Wallez, G ;
Gaubicher, J ;
Quarton, M .
JOURNAL OF SOLID STATE CHEMISTRY, 2004, 177 (08) :2896-2902
[8]   Electrochemical performance of different Li-VOPO4 systems [J].
Dupré, N ;
Gaubicher, J ;
Angenault, J ;
Wallez, G ;
Quarton, M .
JOURNAL OF POWER SOURCES, 2001, 97-8 :532-534
[9]   Positive electrode materials for lithium batteries based on VOPO4 [J].
Dupré, N ;
Gaubicher, J ;
Le Mercier, T ;
Wallez, G ;
Angenault, J ;
Quarton, M .
SOLID STATE IONICS, 2001, 140 (3-4) :209-221
[10]   Li/β-VOPO4:: A new 4 V system for lithium batteries [J].
Gaubicher, J ;
Le Mercier, T ;
Chabre, Y ;
Angenault, J ;
Quarton, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (12) :4375-4379