On the structures and dimensions of Moran sets

被引:51
作者
Hua, S [1 ]
Rao, H
Wen, ZY
Wu, J
机构
[1] Tsing Hua Univ, Dept Math, Beijing 100084, Peoples R China
[2] Wuhan Univ, State Key Lab Software, Dept Math, Wuhan 430072, Peoples R China
[3] Wuhan Univ, State Key Lab Software, Ctr Nonlinear Sci, Wuhan 430072, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY | 2000年 / 43卷 / 08期
基金
中国国家自然科学基金;
关键词
Moran set; net measure;
D O I
10.1007/BF02884183
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Moran sets and the Moran class are defined by geometric fashion that distinguishes the classical self-similar sets from the following points: (i) The placements of the basic sets at each step of the constructions can be arbitrary. (ii) The contraction ratios may be different at each step. (iii) The lower limit of the contraction ratios permits zero. The properties of the Moran sets and Moran class are studied, and the Hausdorff, packing and upper Box-counting dimensions of the Moran sets are determined by net measure techniques. It is shown that some important properties of the self-similar sets no longer hold for Moran sets.
引用
收藏
页码:836 / 852
页数:17
相关论文
共 14 条
[1]  
Bedford T, 1991, FRACTAL GEOMETRY ANA, P1
[2]  
Falconer K., 1990, FRACTAL GEOMETRY MAT, V2
[3]   Some dimensional results for homogeneous Moran sets [J].
Feng, DJ ;
Wen, ZY ;
Wu, J .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1997, 40 (05) :475-482
[4]  
Feng DJ, 1997, PROG NAT SCI, V7, P172
[5]  
FENG DJ, 1997, THESIS WUHAN U
[6]  
Hua S, 1996, PROG NAT SCI, V6, P148
[7]  
Hua S., 1994, ACTA MATH APPL SIN, V17, P551
[8]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747
[9]  
MARION J, 1986, ANN SCI MATH QUEBEC, V10, P111
[10]  
Mauldin RD, 1996, P LOND MATH SOC, V73, P105