The identification of protein-protein interactions of the nuclear pore complex of Saccharomyces cerevisiae using high throughput matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry

被引:36
作者
Huang, L
Baldwin, MA
Maltby, DA
Medzihradszky, KF
Baker, PR
Allen, N
Rexach, M
Edmondson, RD
Campbell, J
Juhasz, P
Martin, SA
Vestal, ML
Burlingame, AL [1 ]
机构
[1] Univ Calif San Francisco, San Francisco, CA 94143 USA
[2] Stanford Univ, Stanford, CA 94305 USA
[3] Genom Solut Inc, Ann Arbor, MI 48108 USA
[4] Appl Biosyst Inc, Framingham, MA 01701 USA
关键词
D O I
10.1074/mcp.M200027-MCP200
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Mass spectrometry has become the technology of choice for detailed identification of proteins in complex mixtures. Although electrophoretic separation, proteolytic digestion, mass spectrometric analysis of unseparated digests, and database searching have become standard methods in widespread use, peptide sequence information obtained by collision-induced dissociation and tandem mass spectrometry is required to establish the most comprehensive and reliable results. Most tandem mass spectrometers in current use employ electrospray ionization. In this work a novel tandem mass spectrometer employing matrix-assisted laser desorption ionization-time-of-flight/time-of-flight operating at 200 Hz has been used to identify proteins interacting with known nucleoporins in the nuclear pore complex of Saccharomyces cerevisiae. Proteins interacting with recombinant proteins as bait were purified from yeast extracts and then separated by one-dimensional SIDS-PAGE. Although peptide mass fingerprinting is sometimes sufficient to identify proteins, this study shows the importance of employing tandem mass spectrometry for identifying proteins in mixtures or as covalently modified forms. The rules for incorporating these features into MS-Tag are presented. In addition to providing an evaluation of the sensitivity and overall quality of collision-induced dissociation spectra obtained, standard conditions for ionization and fragmentation have been selected that would allow automatic data collection and analysis, without the need to adjust parameters in a sample-specific fashion. Other considerations essential for successful high throughput protein analysis are discussed.
引用
收藏
页码:434 / 450
页数:17
相关论文
共 43 条
[1]   Proteomic analysis of nucleoporin interacting proteins [J].
Allen, NPC ;
Huang, L ;
Burlingame, A ;
Rexach, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (31) :29268-29274
[2]   CHARACTERIZATION BY TANDEM MASS-SPECTROMETRY OF STRUCTURAL MODIFICATIONS IN PROTEINS [J].
BIEMANN, K ;
SCOBLE, HA .
SCIENCE, 1987, 237 (4818) :992-998
[3]   SEQUENCING OF PEPTIDES BY TANDEM MASS-SPECTROMETRY AND HIGH-ENERGY COLLISION-INDUCED DISSOCIATION [J].
BIEMANN, K .
METHODS IN ENZYMOLOGY, 1990, 193 :455-479
[4]  
CHALKLEY RJ, 2002, IN PRESS 50 ASMS C M
[5]   Karyopherins and nuclear import [J].
Chook, YM ;
Blobel, G .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2001, 11 (06) :703-715
[6]   RAPID MASS-SPECTROMETRIC PEPTIDE SEQUENCING AND MASS MATCHING FOR CHARACTERIZATION OF HUMAN-MELANOMA PROTEINS ISOLATED BY 2-DIMENSIONAL PAGE [J].
CLAUSER, KR ;
HALL, SC ;
SMITH, DM ;
WEBB, JW ;
ANDREWS, LE ;
TRAN, HM ;
EPSTEIN, LB ;
BURLINGAME, AL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (11) :5072-5076
[7]   Role of accurate mass measurement (±10 ppm) in protein identification strategies employing MS or MS MS and database searching [J].
Clauser, KR ;
Baker, P ;
Burlingame, AL .
ANALYTICAL CHEMISTRY, 1999, 71 (14) :2871-2882
[8]   Influence of matrix solution conditions on the MALDI-MS analysis of peptides and proteins [J].
Cohen, SL ;
Chait, BT .
ANALYTICAL CHEMISTRY, 1996, 68 (01) :31-37
[9]   The nucleoporin Nup60p functions as a Gsp1p-GTP-sensitive tether for Nup2p at the nuclear pore complex [J].
Denning, D ;
Mykytka, B ;
Allen, NPC ;
Huang, L ;
Burlingame, A ;
Rexach, M .
JOURNAL OF CELL BIOLOGY, 2001, 154 (05) :937-950
[10]   Functional organization of the yeast proteome by systematic analysis of protein complexes [J].
Gavin, AC ;
Bösche, M ;
Krause, R ;
Grandi, P ;
Marzioch, M ;
Bauer, A ;
Schultz, J ;
Rick, JM ;
Michon, AM ;
Cruciat, CM ;
Remor, M ;
Höfert, C ;
Schelder, M ;
Brajenovic, M ;
Ruffner, H ;
Merino, A ;
Klein, K ;
Hudak, M ;
Dickson, D ;
Rudi, T ;
Gnau, V ;
Bauch, A ;
Bastuck, S ;
Huhse, B ;
Leutwein, C ;
Heurtier, MA ;
Copley, RR ;
Edelmann, A ;
Querfurth, E ;
Rybin, V ;
Drewes, G ;
Raida, M ;
Bouwmeester, T ;
Bork, P ;
Seraphin, B ;
Kuster, B ;
Neubauer, G ;
Superti-Furga, G .
NATURE, 2002, 415 (6868) :141-147