High-Energy-Density Carbon Supercapacitors Incorporating a Plastic-Crystal-Based Nonaqueous Redox-Active Gel Polymer Electrolyte

被引:52
作者
Yadav, Neetu [1 ]
Yadav, Nitish [1 ]
Hashmi, S. A. [1 ]
机构
[1] Univ Delhi, Dept Phys & Astrophys, Delhi 110007, India
关键词
supercapacitor; redox additive; gel polymer electrolyte; biomass-derived activated carbon; plastic crystal; SOLID-STATE SUPERCAPACITORS; CONSTANT-PHASE ELEMENT; IONIC-LIQUID; IMPEDANCE SPECTROSCOPY; PERFORMANCE; SUCCINONITRILE; OXIDE; HYDROQUINONE; STORAGE;
D O I
10.1021/acsaem.1c00703
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Addition of redox additives in electrolytes to enhance the electrochemical activity at electrode-electrolyte interfaces is one of the prime approaches these days to develop high-energy-density supercapacitors. Here, we report an investigation on a quasi-solid-state supercapacitor, fabricated with a nonaqueous, gel polymer electrolyte (GPE) based on a mixture of a plastic crystal succinonitrile and an ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethyl sulfonyl) imide, added with a redox additive hydroquinone (HQ), immobilized in a polymer poly(vinylidine fluoride-cohexafluoropropylene). The HQ-incorporated GPE is observed to be a freestanding, easily processible, and reusable film, showing excellent flexibility and thermal stability up to similar to 100 degrees C. The high ionic conductivity (similar to 4.2 mS cm(-1)) and wide electrochemical stability window (similar to 5.0 V) through linear sweep voltammetry measurements make the optimum composition of GPE a potential electrolyte for high-energy-density supercapacitors. The symmetric supercapacitor coin cells have been fabricated with peanut shell-derived porous carbon electrodes separated by GPE films. The electrochemical activity due to the presence of HQ at carbon electrode-GPE interfaces introduces additional pseudocapacitance over the double-layer capacitance, leading to enhanced overall specific capacitance (289 F g(-1)), and hence corresponds to the high specific energy (similar to 40 Wh kg(-1)) and maximum power (similar to 20 kW kg(-1)). The capacitor cell shows prolonged cyclic profile up to similar to 10 000 charge-discharge cycles with ca. 85-93% Coulombic efficiency.
引用
收藏
页码:6635 / 6649
页数:15
相关论文
共 69 条
[1]  
Beguin F, 2010, ADV MAT TECH SER, P1
[2]   Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review [J].
Bi, Zhihong ;
Kong, Qingqiang ;
Cao, Yufang ;
Sun, Guohua ;
Su, Fangyuan ;
Wei, Xianxian ;
Li, Xiaoming ;
Ahmad, Aziz ;
Xie, Lijing ;
Chen, Cheng-Meng .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (27) :16028-16045
[3]   Ionic liquids in supercapacitors [J].
Brandt, A. ;
Pohlmann, S. ;
Varzi, A. ;
Balducci, A. ;
Passerini, S. .
MRS BULLETIN, 2013, 38 (07) :554-559
[4]   Adiponitrile-based electrochemical double layer capacitor [J].
Brandt, A. ;
Isken, P. ;
Lex-Balducci, A. ;
Balducci, A. .
JOURNAL OF POWER SOURCES, 2012, 204 :213-219
[5]   Gel Polymer Electrolytes for Electrochemical Energy Storage [J].
Cheng, Xunliang ;
Pan, Jian ;
Zhao, Yang ;
Liao, Meng ;
Peng, Huisheng .
ADVANCED ENERGY MATERIALS, 2018, 8 (07)
[6]  
Chiu C.-K., ECS M ABSTR
[7]  
Conway B.E., 2013, ELECTROCHEMICAL SUPE
[8]   Relationship between the Origin of Constant-Phase Element Behavior in Electrochemical Impedance Spectroscopy and Electrode Surface Structure [J].
Cordoba-Torres, Pedro ;
Mesquita, Thiago J. ;
Nogueira, Ricardo P. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (08) :4136-4147
[9]   A high voltage solid state symmetric supercapacitor based on graphene-polyoxometalate hybrid electrodes with a hydroquinone doped hybrid gelelectrolyte [J].
Dubal, Deepak P. ;
Suarez-Guevara, Jullieth ;
Tonti, Dino ;
Enciso, Eduardo ;
Gomez-Romero, Pedro .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (46) :23483-23492
[10]   Improved redox-active ionic liquid-based ionogel electrolyte by introducing carbon nanotubes for application in all-solid-state supercapacitors [J].
Fan, Le-Qing ;
Tu, Qiu-Mei ;
Geng, Cheng-Long ;
Wang, Yong-Lan ;
Sun, Si-Jia ;
Huang, Yun-Fang ;
Wu, Ji-Huai .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (35) :17131-17139