Thermo-electro-mechanical vibration of postbuckled piezoelectric Timoshenko nanobeams based on the nonlocal elasticity theory

被引:111
作者
Ansari, R. [1 ]
Oskouie, M. Faraji [1 ]
Gholami, R. [2 ]
Sadeghi, F. [1 ]
机构
[1] Univ Guilan, Dept Mech Engn, POB 3756, Rasht, Iran
[2] Islamic Azad Univ, Lahijan Branch, Dept Mech Engn, POB 1616, Lahijan, Iran
关键词
Nano-structures; Buckling; Vibration; Numerical analysis; WAVE-PROPAGATION; NONLINEAR VIBRATION; FORCED VIBRATION; PLATE MODEL; ZNO; NANOPLATE; CRACK; SCALE; NANOWIRES; CYLINDER;
D O I
10.1016/j.compositesb.2015.12.029
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, free vibration behavior of piezoelectric Timoshenko nanobeams in the vicinity of post buckling domain is investigated based on the nonlocal elasticity theory. It is assumed that the piezoelectric nanobeam is subjected to an axial compression force, an applied voltage and a uniform temperature change. Using Hamilton principle, the governing differential equations of motion incorporating von Karman geometric nonlinearity and the corresponding boundary conditions are derived and then discretized on the basis of generalized differential quadrature (GDQ) scheme. After solving the parameterized equations using Newton-Raphson technique, a dynamic analysis based on a numerical solution strategy is performed to predict the natural frequencies of piezoelectric nanobeams associated with both prebuckling and postbuckling domains. Numerical results are presented to study the effects of nonlocal parameter, temperature rise and external electric voltage on the size-dependent vibration behavior of piezoelectric nanobeams with clamped clamped (C-C), clamped-simply supported (C-SS) and simply supported-simply supported (SS-SS) end conditions. It is demonstrated that these parameters may shift the postbuckling domain to higher or lower applied axial loads. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:316 / 327
页数:12
相关论文
共 67 条
[1]   Elasticity Size Effects in ZnO Nanowires-A Combined Experimental-Computational Approach [J].
Agrawal, Ravi ;
Peng, Bei ;
Gdoutos, Eleftherios E. ;
Espinosa, Horacio D. .
NANO LETTERS, 2008, 8 (11) :3668-3674
[2]  
[Anonymous], 2004, INTRO NONLINEAR FINI, DOI DOI 10.1093/ACPROF:OSO/978019-8525295.003.0002
[3]   Nonlinear analysis of forced vibration of nonlocal third-order shear deformable beam model of magneto-electro-thermo elastic nanobeams [J].
Ansari, R. ;
Hasrati, E. ;
Gholami, R. ;
Sadeghi, F. .
COMPOSITES PART B-ENGINEERING, 2015, 83 :226-241
[4]   On the forced vibration analysis of Timoshenko nanobeams based on the surface stress elasticity theory [J].
Ansari, R. ;
Mohammadi, V. ;
Shojaei, M. Faghih ;
Gholami, R. ;
Sahmani, S. .
COMPOSITES PART B-ENGINEERING, 2014, 60 :158-166
[5]   Vibration analysis of single-walled carbon nanotubes using different gradient elasticity theories [J].
Ansari, R. ;
Gholami, R. ;
Rouhi, H. .
COMPOSITES PART B-ENGINEERING, 2012, 43 (08) :2985-2989
[6]   Nonlocal plate model for free vibrations of single-layered graphene sheets [J].
Ansari, R. ;
Sahmani, S. ;
Arash, B. .
PHYSICS LETTERS A, 2010, 375 (01) :53-62
[7]   Nonlinear vibration of embedded SWBNNTs based on nonlocal Timoshenko beam theory using DQ method [J].
Arani, A. Ghorbanpour ;
Atabakhshian, V. ;
Loghman, A. ;
Shajari, A. R. ;
Amir, S. .
PHYSICA B-CONDENSED MATTER, 2012, 407 (13) :2549-2555
[8]   Nonlinear vibration analysis of piezoelectric nanoelectromechanical resonators based on nonlocal elasticity theory [J].
Asemi, S. R. ;
Farajpour, A. ;
Mohammadi, M. .
COMPOSITE STRUCTURES, 2014, 116 :703-712
[9]   Nonlinear vibration analysis of nonlocal nanowires [J].
Askari, Hassan ;
Esmailzadeh, Ebrahim ;
Zhang, Dan .
COMPOSITES PART B-ENGINEERING, 2014, 67 :607-613
[10]   Modeling carbon nanotube-based mass sensors using axial vibration and nonlocal elasticity [J].
Aydogdu, Metin ;
Filiz, Seckin .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2011, 43 (06) :1229-1234