Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from flue gas

被引:143
作者
Alvizo, Oscar [1 ]
Nguyen, Luan J. [2 ]
Savile, Christopher K. [1 ]
Bresson, Jamie A. [1 ]
Lakhapatri, Satish L. [3 ]
Solis, Earl O. P. [2 ]
Fox, Richard J. [4 ]
Broering, James M. [5 ]
Benoit, Michael R. [1 ]
Zimmerman, Sabrina A. [6 ]
Novick, Scott J. [1 ]
Liang, Jack [1 ]
Lalonde, James J. [1 ]
机构
[1] Codexis Inc, Redwood City, CA 94063 USA
[2] Calysta Energy Inc, Menlo Pk, CA 94025 USA
[3] Siluria Technol Inc, San Francisco, CA 94158 USA
[4] Pioneer HiBred Int Inc, Johnston, IA 50131 USA
[5] Novozymes Inc, Franklinton, NC 27525 USA
[6] BP Biofuels, San Diego, CA 92121 USA
关键词
carbonic anhydrase; directed evolution; carbon capture; SATURATION MUTAGENESIS; ABSORPTION; STABILITY; KINETICS;
D O I
10.1073/pnas.1411461111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Carbonic anhydrase (CA) is one of nature's fastest enzymes and can dramatically improve the economics of carbon capture under demanding environments such as coal-fired power plants. The use of CA to accelerate carbon capture is limited by the enzyme's sensitivity to the harsh process conditions. Using directed evolution, the properties of a beta-class CA from Desulfovibrio vulgaris were dramatically enhanced. Iterative rounds of library design, library generation, and high-throughput screening identified highly stable CA variants that tolerate temperatures of up to 107 degrees C in the presence of 4.2 M alkaline amine solvent at pH > 10.0. This increase in thermostability and alkali tolerance translates to a 4,000,000-fold improvement over the natural enzyme. At pilot scale, the evolved catalyst enhanced the rate of CO2 absorption 25-fold compared with the noncatalyzed reaction.
引用
收藏
页码:16436 / 16441
页数:6
相关论文
共 31 条
[1]   Kinetics of the reactive absorption of carbon dioxide in high CO2-loaded, concentrated aqueous monoethanolamine solutions [J].
Aboudheir, A ;
Tontiwachwuthikul, P ;
Chakma, A ;
Idem, R .
CHEMICAL ENGINEERING SCIENCE, 2003, 58 (23-24) :5195-5210
[2]  
Blais R, 2003, US Patent, Patent No. [09/424,852: US6524843, 09424852]
[3]   Precision is essential for efficient catalysis in an evolved Kemp eliminase [J].
Blomberg, Rebecca ;
Kries, Hajo ;
Pinkas, Daniel M. ;
Mittl, Peer R. E. ;
Gruetter, Markus G. ;
Privett, Heidi K. ;
Mayo, Stephen L. ;
Hilvert, Donald .
NATURE, 2013, 503 (7476) :418-+
[4]   Status of protein engineering for biocatalysts: how to design an industrially useful biocatalyst [J].
Bommarius, Andreas S. ;
Blum, Janna K. ;
Abrahamson, Michael J. .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2011, 15 (02) :194-200
[5]   Engineering the third wave of biocatalysis [J].
Bornscheuer, U. T. ;
Huisman, G. W. ;
Kazlauskas, R. J. ;
Lutz, S. ;
Moore, J. C. ;
Robins, K. .
NATURE, 2012, 485 (7397) :185-194
[6]   Improving activity and stability of cutinase towards the anionic detergent AOT by complete saturation mutagenesis [J].
Brissos, V. ;
Eggert, T. ;
Cabral, J. M. S. ;
Jaeger, K. -E. .
PROTEIN ENGINEERING DESIGN & SELECTION, 2008, 21 (06) :387-393
[7]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[8]   Carbon Capture and Sequestration [J].
Chu, Steven .
SCIENCE, 2009, 325 (5948) :1599-1599
[9]   Structural mechanics of the pH-dependent activity of β-carbonic anhydrase from Mycobacterium tuberculosis [J].
Covarrubias, AS ;
Bergfors, T ;
Jones, TA ;
Högbom, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (08) :4993-4999
[10]  
Danckwerts PV, 1970, MCGRAW HILL CHEM ENG, P276