Polarimetric SAR image classification using 3D generative adversarial network

被引:0
|
作者
Liu, Lu [1 ,2 ]
Feng, Guobao [3 ]
机构
[1] Xian Univ Technol, Sch Comp Sci & Engn, Xian 710048, Peoples R China
[2] Xian Univ Technol, Shaanxi Key Lab Network Comp & Secur Technol, Xian 710048, Peoples R China
[3] China Acad Space Technol, Natl Key Lab Sci & Technol Space Microwave, Xian 710100, Peoples R China
来源
2020 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE COMMUNICATION AND NETWORK SECURITY (CSCNS2020) | 2021年 / 336卷
基金
中国博士后科学基金;
关键词
Polarimetric SAR image classification; Generative adversarial network; Three-dimensional convolutional;
D O I
10.1051/matecconf/202133608012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a new architecture of three-dimensional deep convolutional generative adversarial network(3D-DCGAN) is specially defined to solve the unstable training problem of GAN and make full use of the information involved in polarimetric data. Firstly, a data cube with nine components of polarimetric coherency matrix are directly used as the input features of DCGAN. After that, a 3D convolutional model is designed as the components of generator and discriminator to construct the 3D-DCGAN, which considers the effective feature extraction capability of 3D convolutional neural network(CNN). Finally parameters of the network are fine-tuned to realize the polarimetric SAR image classification. The experiments results show the feasibility and efficiency of the proposed method.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] POLARIMETRIC SAR TERRAIN CLASSIFICATION USING 3D CONVOLUTIONAL NEURAL NETWORK
    Zhang, Lamei
    Chen, Zexi
    Zou, Bin
    Gao, Ye
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4551 - 4554
  • [2] A Distribution and Structure Match Generative Adversarial Network for SAR Image Classification
    Ren, Zhongle
    Hou, Biao
    Wu, Qian
    Wen, Zaidao
    Jiao, Licheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (06): : 3864 - 3880
  • [3] Deep Convolutional Generative Adversarial Network with Autoencoder for Semisupervised SAR Image Classification
    Zhang, Zheng
    Yang, Jingsong
    Du, Yang
    IEEE Geoscience and Remote Sensing Letters, 2022, 19
  • [4] Deep Convolutional Generative Adversarial Network With Autoencoder for Semisupervised SAR Image Classification
    Zhang, Zheng
    Yang, Jingsong
    Du, Yang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [5] 3D Image Inpainting for Rotor Detection using 3D Encoder-Decoder Generative Adversarial Network
    Chung, Yi-Hao
    Chen, Yen-Lin
    IEEE ISPCE-ASIA 2021: IEEE INTERNATIONAL SYMPOSIUM ON PRODUCT COMPLIANCE ENGINEERING - ASIA, 2021,
  • [6] 3D Image Inpainting for Rotor Detection using 3D Encoder-Decoder Generative Adversarial Network
    Chung, Yi-Hao
    Chen, Yen-Lin
    IEEE ISPCE-ASIA 2021: IEEE INTERNATIONAL SYMPOSIUM ON PRODUCT COMPLIANCE ENGINEERING - ASIA, 2021,
  • [7] Segmentation of Brain Tumor Using a 3D Generative Adversarial Network
    Kalejahi, Behnam Kiani
    Meshgini, Saeed
    Danishvar, Sebelan
    DIAGNOSTICS, 2023, 13 (21)
  • [8] Active Generative Adversarial Network for Image Classification
    Kong, Quan
    Tong, Bin
    Klinkigt, Martin
    Watanabe, Yuki
    Akira, Naoto
    Murakami, Tomokazu
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 4090 - 4097
  • [9] Interactive 3D Modeling with a Generative Adversarial Network
    Liu, Jerry
    Yu, Fisher
    Funkhouser, Thomas
    PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2017, : 126 - 134
  • [10] SAR Image Generation Using Structural Bayesian Deep Generative Adversarial Network
    Zhai, Jia
    Dang, Xunwang
    Chen, Feng
    Xie, Xiaodan
    Zhu, Yong
    Yin, Hongcheng
    2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - FALL (PIERS - FALL), 2019, : 1386 - 1392