Influence of the metal center of metalloprotoporphyrins on the electrocatalytic CO2 reduction to formic acid

被引:64
|
作者
Birdja, Yuvraj Y. [1 ]
Shen, Jing [1 ,2 ]
Koper, Marc T. M. [1 ]
机构
[1] Leiden Univ, Leiden Inst Chem, POB 9502, NL-2300 RA Leiden, Netherlands
[2] Hunan Inst Engn, Chem & Chem Engn Dept, Xiangtan, Peoples R China
关键词
Carbon dioxide reduction; Hydrogen evolution; Formic acid formation; Immobilized molecular catalysts; Metalloporphyrins; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; MOLECULAR CATALYSIS; ELECTRODES; IRON; CONVERSION; COBALT; TETRAPHENYLPORPHYRINS; ELECTROREDUCTION; COMPLEXES;
D O I
10.1016/j.cattod.2017.02.046
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Electrocatalytic conversion of carbon dioxide has gained much interest for the synthesis of value-added chemicals and solar fuels. Important issues such as high overpotentials and competition of hydrogen evolution still need to be overcome for deeper insight into the reaction mechanism in order to steer the selectivity towards specific products. Herein we report on several metalloprotoporphyrins immobilized on a pyrolytic graphite electrode for the selective reduction of carbon dioxide to formic acid. No formic acid is detected on Cr-, Mn-, Co- and Fe-protoporphyrins in perchloric acid of pH 3, while Ni-, Pd-, Cu and Ga-protoporphyrins show only a little formic acid. Rh, In and Sn metal centers produce significant amounts of formic acid. However, the faradaic efficiency varies from 1% to 70% depending on the metal center, the pH of the electrolyte and the applied potential. The differentiation of the faradaic efficiency for formic acid on these metalloprotoporphyrins is strongly related to the activity of the porphyrin for the hydrogen evolution reaction. CO2 reduction on Rh-protoporphyrin is shown to be coupled strongly to the hydrogen evolution reaction, whilst on Sn-and In-protoporphyrin such strong coupling between the two reactions is absent. The activity for the hydrogen evolution increases in the order In < Sn < Rh metal centers, leading to faradaic efficiency for formic acid increasing in the order Rh < Sn < In metal centers. In-protoporphyrin is the most stable and shows a high faradaic efficiency of ca. 70%, at a pH of 9.6 and a potential of -1.9V vs RHE. Experiments in bicarbonate electrolyte were performed in an attempt to qualitatively study the role of bicarbonate in formic acid formation. (C) 2017 The Author(s). Published by Elsevier B.V.
引用
收藏
页码:37 / 47
页数:11
相关论文
共 50 条
  • [31] Regulating the coordination structure of metal single atoms for efficient electrocatalytic CO2 reduction
    Wang, Yuchao
    Liu, Yi
    Liu, Wei
    Wu, Jiao
    Li, Qian
    Feng, Qingguo
    Chen, Zhiyan
    Xiong, Xiang
    Wang, Dingsheng
    Lei, Yongpeng
    ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (12) : 4609 - 4624
  • [32] Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO2 Reduction
    Huo, Shengjuan
    Weng, Zhe
    Wu, Zishan
    Zhong, Yiren
    Wu, Yueshen
    Fang, Jianhui
    Wang, Hailiang
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (34) : 28519 - 28526
  • [33] Wettability control in electrocatalytic CO2 reduction: Effects, modulations and mechanisms
    Lu, Ruichen
    Zhang, Xianze
    Shi, Haixin
    Zhao, Zipeng
    Li, Mufan
    Zhang, Xueqiang
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2024, 341
  • [34] Electrocatalytic Reduction of CO2 in Water by a Palladium-Containing Metallopolymer
    Teixeira, Marcos F. S.
    Olean-Oliveira, Andre
    Anastacio, Fernanda C.
    David-Parra, Diego N.
    Cardoso, Celso X.
    NANOMATERIALS, 2022, 12 (07)
  • [35] Electrocatalytic CO2 Reduction by Imidazolium-Functionalized Molecular Catalysts
    Sung, Siyoung
    Kumar, Davinder
    Gil-Sepulcre, Marcos
    Nippe, Michael
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (40) : 13993 - 13996
  • [36] Preparation of nickel hexacyanoferrate/heterogeneous carbon composites for CO2 continuous electrocatalytic reduction to formic acid
    Peng, Si-Yao
    Jin, Guan-Ping
    Cui, Jing-Si
    Lv, Xiao-Yuan
    Yu, Ye-Xiao
    Tang, Hua-Wei
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2018, 6 (06): : 6931 - 6938
  • [37] Highly Selective Electrocatalytic CO2 Reduction to Methanol on Iridium Dioxide with CO* Spectators
    Zhao, He
    Zhu, Haiyan
    Feng, Yifan
    Zhao, Qinfu
    Suo, Bingbing
    Zou, Wenli
    Han, Huixian
    Zhai, Gaohong
    Jiang, Zhenyi
    Song, Qi
    Li, Yawei
    CHEMELECTROCHEM, 2020, 7 (24): : 5036 - 5043
  • [38] Recent Advances in Transition-Metal-Mediated Electrocatalytic CO2 Reduction: From Homogeneous to Heterogeneous Systems
    Feng, Da-Ming
    Zhu, Yun-Pei
    Chen, Ping
    Ma, Tian-Yi
    CATALYSTS, 2017, 7 (12)
  • [39] Electrochemical CO2 reduction towards formic acid and methanol on transition metal oxide surfaces as a function of CO coverage
    Atrak, Narges
    Tayyebi, Ebrahim
    Skulason, Egill
    CATALYSIS SCIENCE & TECHNOLOGY, 2023, 13 (11) : 3321 - 3336
  • [40] Unexpected Effect of Intramolecular Phenolic Group on Electrocatalytic CO2 Reduction
    Guo, Kai
    Li, Xialiang
    Lei, Haitao
    Zhang, Wei
    Cao, Rui
    CHEMCATCHEM, 2020, 12 (06) : 1591 - 1595