Influence of the metal center of metalloprotoporphyrins on the electrocatalytic CO2 reduction to formic acid

被引:64
|
作者
Birdja, Yuvraj Y. [1 ]
Shen, Jing [1 ,2 ]
Koper, Marc T. M. [1 ]
机构
[1] Leiden Univ, Leiden Inst Chem, POB 9502, NL-2300 RA Leiden, Netherlands
[2] Hunan Inst Engn, Chem & Chem Engn Dept, Xiangtan, Peoples R China
关键词
Carbon dioxide reduction; Hydrogen evolution; Formic acid formation; Immobilized molecular catalysts; Metalloporphyrins; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; MOLECULAR CATALYSIS; ELECTRODES; IRON; CONVERSION; COBALT; TETRAPHENYLPORPHYRINS; ELECTROREDUCTION; COMPLEXES;
D O I
10.1016/j.cattod.2017.02.046
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Electrocatalytic conversion of carbon dioxide has gained much interest for the synthesis of value-added chemicals and solar fuels. Important issues such as high overpotentials and competition of hydrogen evolution still need to be overcome for deeper insight into the reaction mechanism in order to steer the selectivity towards specific products. Herein we report on several metalloprotoporphyrins immobilized on a pyrolytic graphite electrode for the selective reduction of carbon dioxide to formic acid. No formic acid is detected on Cr-, Mn-, Co- and Fe-protoporphyrins in perchloric acid of pH 3, while Ni-, Pd-, Cu and Ga-protoporphyrins show only a little formic acid. Rh, In and Sn metal centers produce significant amounts of formic acid. However, the faradaic efficiency varies from 1% to 70% depending on the metal center, the pH of the electrolyte and the applied potential. The differentiation of the faradaic efficiency for formic acid on these metalloprotoporphyrins is strongly related to the activity of the porphyrin for the hydrogen evolution reaction. CO2 reduction on Rh-protoporphyrin is shown to be coupled strongly to the hydrogen evolution reaction, whilst on Sn-and In-protoporphyrin such strong coupling between the two reactions is absent. The activity for the hydrogen evolution increases in the order In < Sn < Rh metal centers, leading to faradaic efficiency for formic acid increasing in the order Rh < Sn < In metal centers. In-protoporphyrin is the most stable and shows a high faradaic efficiency of ca. 70%, at a pH of 9.6 and a potential of -1.9V vs RHE. Experiments in bicarbonate electrolyte were performed in an attempt to qualitatively study the role of bicarbonate in formic acid formation. (C) 2017 The Author(s). Published by Elsevier B.V.
引用
收藏
页码:37 / 47
页数:11
相关论文
共 50 条
  • [21] A local proton source from carboxylic acid functionalized metal porphyrins for enhanced electrocatalytic CO2 reduction
    Zhou, Yiwei
    Xiao, Yunheng
    Zhao, Jian
    NEW JOURNAL OF CHEMISTRY, 2020, 44 (37) : 16062 - 16068
  • [22] Metal-based electrocatalytic conversion of CO2 to formic acid/formate
    Ding, Peng
    Zhao, Haitao
    Li, Tingshuai
    Luo, Yongsong
    Fan, Guangyin
    Chen, Guang
    Gao, Shuyan
    Shi, Xifeng
    Lu, Siyu
    Sun, Xuping
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (42) : 21947 - 21960
  • [23] Recent Progress in Electrocatalytic Reduction of CO2
    Ren, Chaojun
    Ni, Wei
    Li, Hongda
    CATALYSTS, 2023, 13 (04)
  • [24] Designing Electrolyzers for Electrocatalytic CO2 Reduction
    Gao, Dunfeng
    Wei, Pengfei
    Li, Hefei
    Lin, Long
    Wang, Guoxiong
    Bao, Xinhe
    ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (05)
  • [25] Advances of Cobalt Phthalocyanine in Electrocatalytic CO2 Reduction to CO: a Mini Review
    Feng, Qiang
    Sun, Yuwei
    Gu, Xiang
    Dong, Zhongzhen
    ELECTROCATALYSIS, 2022, 13 (06) : 675 - 690
  • [26] Enhanced electrocatalytic activity of iron amino porphyrins using a flow cell for reduction of CO2 to CO
    Abdinejad, Maryam
    Dao, Caitlin
    Zhang, Xiao-An
    Kraatz, Heinz Bernhard
    JOURNAL OF ENERGY CHEMISTRY, 2021, 58 : 162 - 169
  • [27] Novel Porous Melamine Foam Loaded with MnCe for Highly Selective Electrocatalytic CO2 to Formic Acid
    Lei, Yaru
    Xiong, Tingkai
    Yu, Xiangtao
    Huang, Xiubing
    Tang, Xianlong
    Yi, Honghong
    Zhou, Yuansong
    Zhao, Shunzheng
    Sun, Long
    Gao, Fengyu
    ACTA CHIMICA SINICA, 2024, 82 (04) : 396 - 408
  • [28] Cathodic reduction of CO2 to formic acid: Effect of the nature of the cathode for pressurized systems
    Proietto, Federica
    Rinicella, Riccardo
    Galia, Alessandro
    Avila-Bolivar, Beatriz
    Montiel, Vicente
    Solla-Gullon, Jose
    Scialdone, Onofrio
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (03):
  • [29] A computational study of electrochemical CO2 reduction to formic acid on metal-doped SnO2
    Liu, Zhaochun
    Zong, Xue
    Vlachos, Dionisios G.
    Filot, Ivo A. W.
    Hensen, Emiel J. M.
    CHINESE JOURNAL OF CATALYSIS, 2023, 50 : 249 - 259
  • [30] Electrocatalytic Reduction of CO2 on Mono-Metal/Graphene/Polyurethane Sponge Electrodes
    Yang, Yajing
    Wang, Linyuan
    Ma, Xin
    Zhu, Liangsheng
    Bian, Zhaoyong
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (04): : 3805 - 3823