Influence of the metal center of metalloprotoporphyrins on the electrocatalytic CO2 reduction to formic acid

被引:64
|
作者
Birdja, Yuvraj Y. [1 ]
Shen, Jing [1 ,2 ]
Koper, Marc T. M. [1 ]
机构
[1] Leiden Univ, Leiden Inst Chem, POB 9502, NL-2300 RA Leiden, Netherlands
[2] Hunan Inst Engn, Chem & Chem Engn Dept, Xiangtan, Peoples R China
关键词
Carbon dioxide reduction; Hydrogen evolution; Formic acid formation; Immobilized molecular catalysts; Metalloporphyrins; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; MOLECULAR CATALYSIS; ELECTRODES; IRON; CONVERSION; COBALT; TETRAPHENYLPORPHYRINS; ELECTROREDUCTION; COMPLEXES;
D O I
10.1016/j.cattod.2017.02.046
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Electrocatalytic conversion of carbon dioxide has gained much interest for the synthesis of value-added chemicals and solar fuels. Important issues such as high overpotentials and competition of hydrogen evolution still need to be overcome for deeper insight into the reaction mechanism in order to steer the selectivity towards specific products. Herein we report on several metalloprotoporphyrins immobilized on a pyrolytic graphite electrode for the selective reduction of carbon dioxide to formic acid. No formic acid is detected on Cr-, Mn-, Co- and Fe-protoporphyrins in perchloric acid of pH 3, while Ni-, Pd-, Cu and Ga-protoporphyrins show only a little formic acid. Rh, In and Sn metal centers produce significant amounts of formic acid. However, the faradaic efficiency varies from 1% to 70% depending on the metal center, the pH of the electrolyte and the applied potential. The differentiation of the faradaic efficiency for formic acid on these metalloprotoporphyrins is strongly related to the activity of the porphyrin for the hydrogen evolution reaction. CO2 reduction on Rh-protoporphyrin is shown to be coupled strongly to the hydrogen evolution reaction, whilst on Sn-and In-protoporphyrin such strong coupling between the two reactions is absent. The activity for the hydrogen evolution increases in the order In < Sn < Rh metal centers, leading to faradaic efficiency for formic acid increasing in the order Rh < Sn < In metal centers. In-protoporphyrin is the most stable and shows a high faradaic efficiency of ca. 70%, at a pH of 9.6 and a potential of -1.9V vs RHE. Experiments in bicarbonate electrolyte were performed in an attempt to qualitatively study the role of bicarbonate in formic acid formation. (C) 2017 The Author(s). Published by Elsevier B.V.
引用
收藏
页码:37 / 47
页数:11
相关论文
共 50 条
  • [11] Electrocatalytic Alloys for CO2 Reduction
    He, Jingfu
    Johnson, Noah J. J.
    Huang, Aoxue
    Berlinguette, Curtis P.
    CHEMSUSCHEM, 2018, 11 (01) : 48 - 57
  • [12] Electrocatalytic and Photocatalytic Reduction of CO2 to CO by Cobalt(II) Tripodal Complexes: Low Overpotentials, High Efficiency and Selectivity
    Wang, Jia-Wei
    Huang, Hai-Hua
    Sun, Jia-Kai
    Ouyang, Ting
    Zhong, Di-Chang
    Lu, Tong-Bu
    CHEMSUSCHEM, 2018, 11 (06) : 1025 - 1031
  • [13] Efficient and Stable Metal Macrocyclic Molecular Catalyst for Electrocatalytic Reduction of CO2 to CO
    Wang, Guilong
    Gong, Shanhe
    Li, Mengxian
    Liu, Jun
    Lv, Xiaomeng
    PROGRESS IN CHEMISTRY, 2025, 37 (02) : 173 - 184
  • [14] 2D Metal/Graphene and 2D Metal/Graphene/Metal Systems for Electrocatalytic Conversion of CO2 to Formic Acid
    Cho, Jinwon
    Medina, Arturo
    Saih, Ines
    Choi, Ji Il
    Drexler, Matthew
    Goddard, William A., III
    Alamgir, Faisal M.
    Jang, Seung Soon
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (12)
  • [15] A techno-economic evaluation approach to the electrochemical reduction of CO2 for formic acid manufacture
    Rumayor, M.
    Dominguez-Ramos, A.
    Perez, P.
    Irabien, A.
    JOURNAL OF CO2 UTILIZATION, 2019, 34 : 490 - 499
  • [16] Nanoporous Bismuth Induced by Surfactant-Modified Dealloying for Efficient Electrocatalytic Reduction of CO2 to Formic Acid
    Guan, Shan
    Chen, Zhen-Nan
    Liu, Lu-Qi
    Li, Ya-Kang
    Lan, Cheng-Yang
    Wang, Jian-Zhi
    Yin, Peng-Fei
    Yang, Jing
    Liu, Hui
    Du, Xi-Wen
    Dong, Cunku
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (08) : 3201 - 3209
  • [17] Electrodeposited porous Pb electrode with improved electrocatalytic performance for the electroreduction of CO2 to formic acid
    Wang, Jing
    Wang, Hua
    Han, Zhenzhen
    Han, Jinyu
    FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2015, 9 (01) : 57 - 63
  • [18] Electrocatalytic Reduction of CO2 to Formic Acid on Palladium-Graphene Nanocomposites Gas-Diffusion Electrode
    Lu, Guang
    Wang, Hui
    Bian, Zhao-Yong
    Liu, Xin
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2014, 14 (09) : 7097 - 7103
  • [19] Dual-Site Metal Catalysts for Electrocatalytic CO2 Reduction Reaction
    Liu, Li
    Wu, Xueting
    Wang, Fei
    Zhang, Lingling
    Wang, Xiao
    Song, Shuyan
    Zhang, Hongjie
    CHEMISTRY-A EUROPEAN JOURNAL, 2023, 29 (49)
  • [20] Shaping the Electrocatalytic Performance of Metal Complexes for CO2 Reduction
    Gotico, Philipp
    Leibl, Winfried
    Halime, Zakaria
    Aukauloo, Ally
    CHEMELECTROCHEM, 2021, 8 (18) : 3472 - 3481