Influence of the metal center of metalloprotoporphyrins on the electrocatalytic CO2 reduction to formic acid

被引:64
|
作者
Birdja, Yuvraj Y. [1 ]
Shen, Jing [1 ,2 ]
Koper, Marc T. M. [1 ]
机构
[1] Leiden Univ, Leiden Inst Chem, POB 9502, NL-2300 RA Leiden, Netherlands
[2] Hunan Inst Engn, Chem & Chem Engn Dept, Xiangtan, Peoples R China
关键词
Carbon dioxide reduction; Hydrogen evolution; Formic acid formation; Immobilized molecular catalysts; Metalloporphyrins; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; MOLECULAR CATALYSIS; ELECTRODES; IRON; CONVERSION; COBALT; TETRAPHENYLPORPHYRINS; ELECTROREDUCTION; COMPLEXES;
D O I
10.1016/j.cattod.2017.02.046
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Electrocatalytic conversion of carbon dioxide has gained much interest for the synthesis of value-added chemicals and solar fuels. Important issues such as high overpotentials and competition of hydrogen evolution still need to be overcome for deeper insight into the reaction mechanism in order to steer the selectivity towards specific products. Herein we report on several metalloprotoporphyrins immobilized on a pyrolytic graphite electrode for the selective reduction of carbon dioxide to formic acid. No formic acid is detected on Cr-, Mn-, Co- and Fe-protoporphyrins in perchloric acid of pH 3, while Ni-, Pd-, Cu and Ga-protoporphyrins show only a little formic acid. Rh, In and Sn metal centers produce significant amounts of formic acid. However, the faradaic efficiency varies from 1% to 70% depending on the metal center, the pH of the electrolyte and the applied potential. The differentiation of the faradaic efficiency for formic acid on these metalloprotoporphyrins is strongly related to the activity of the porphyrin for the hydrogen evolution reaction. CO2 reduction on Rh-protoporphyrin is shown to be coupled strongly to the hydrogen evolution reaction, whilst on Sn-and In-protoporphyrin such strong coupling between the two reactions is absent. The activity for the hydrogen evolution increases in the order In < Sn < Rh metal centers, leading to faradaic efficiency for formic acid increasing in the order Rh < Sn < In metal centers. In-protoporphyrin is the most stable and shows a high faradaic efficiency of ca. 70%, at a pH of 9.6 and a potential of -1.9V vs RHE. Experiments in bicarbonate electrolyte were performed in an attempt to qualitatively study the role of bicarbonate in formic acid formation. (C) 2017 The Author(s). Published by Elsevier B.V.
引用
收藏
页码:37 / 47
页数:11
相关论文
共 50 条
  • [11] 2D Metal/Graphene and 2D Metal/Graphene/Metal Systems for Electrocatalytic Conversion of CO2 to Formic Acid
    Cho, Jinwon
    Medina, Arturo
    Saih, Ines
    Choi, Ji Il
    Drexler, Matthew
    Goddard, William A., III
    Alamgir, Faisal M.
    Jang, Seung Soon
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (12)
  • [12] Enhanced electrocatalytic CO2 reduction to formic acid using nanocomposites of In2O3@C with graphene
    Wenxiang Li
    Shuo Gao
    Chuanruo Yang
    Juntao Yang
    Amjad Nisar
    Guolei Xiang
    Junsu Jin
    Nano Research, 2024, 17 : 5031 - 5039
  • [13] Enhanced electrocatalytic CO2 reduction to formic acid using nanocomposites of In2O3@C with graphene
    Li, Wenxiang
    Gao, Shuo
    Yang, Chuanruo
    Yang, Juntao
    Nisar, Amjad
    Xiang, Guolei
    Jin, Junsu
    NANO RESEARCH, 2024, 17 (06) : 5031 - 5039
  • [14] CO2 and formic acid, a winning couple in reduction chemistry
    Cantat, Thibault
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [15] Nanoporous Bismuth Induced by Surfactant-Modified Dealloying for Efficient Electrocatalytic Reduction of CO2 to Formic Acid
    Guan, Shan
    Chen, Zhen-Nan
    Liu, Lu-Qi
    Li, Ya-Kang
    Lan, Cheng-Yang
    Wang, Jian-Zhi
    Yin, Peng-Fei
    Yang, Jing
    Liu, Hui
    Du, Xi-Wen
    Dong, Cunku
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (08) : 3201 - 3209
  • [16] Electrocatalytic Reduction of CO2 to Formic Acid on Palladium-Graphene Nanocomposites Gas-Diffusion Electrode
    Lu, Guang
    Wang, Hui
    Bian, Zhao-Yong
    Liu, Xin
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2014, 14 (09) : 7097 - 7103
  • [17] Reply to: On the role of metal cations in CO2 electrocatalytic reduction
    Federico Dattila
    Mariana C. O. Monteiro
    Marc T. M. Koper
    Núria López
    Nature Catalysis, 2022, 5 : 979 - 981
  • [18] Reply to: On the role of metal cations in CO2 electrocatalytic reduction
    Dattila, Federico
    Monteiro, Mariana C. O.
    Koper, Marc T. M.
    Lopez, Nuria
    NATURE CATALYSIS, 2022, 5 (11) : 979 - 981
  • [19] Shaping the Electrocatalytic Performance of Metal Complexes for CO2 Reduction
    Gotico, Philipp
    Leibl, Winfried
    Halime, Zakaria
    Aukauloo, Ally
    CHEMELECTROCHEM, 2021, 8 (18) : 3472 - 3481
  • [20] Electrochemical CO2 reduction to formic acid on a Pd-based formic acid oxidation catalyst
    Kortlever, Ruud
    Balemans, Collin
    Kwon, Youngkook
    Koper, Marc T. M.
    CATALYSIS TODAY, 2015, 244 : 58 - 62