Optimal control of growth coefficient on a steady-state population model

被引:42
|
作者
Ding, W. [2 ]
Finotti, H. [1 ]
Lenhart, S. [1 ]
Lou, Y. [3 ]
Ye, Q. [4 ]
机构
[1] Univ Tennessee, Dept Math, 121 Ayres Hall, Knoxville, TN 37996 USA
[2] Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37132 USA
[3] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[4] Shanghai Univ Finance & Econ, Dept Appl Math, Shanghai 200433, Peoples R China
基金
美国国家科学基金会;
关键词
Optimal control; Elliptic PDE; Population size; Growth coefficient; SPATIAL HETEROGENEITY; PRINCIPAL EIGENVALUE; INDEFINITE WEIGHT; EQUATIONS; DYNAMICS; SYSTEMS;
D O I
10.1016/j.nonrwa.2009.01.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the control problem of maximizing the net benefit in the conservation of a single species with a fixed amount of resources. The existence of an optimal control is established and the uniqueness and characterization of the optimal control are investigated. Numerical simulations illustrate several cases, for both 1D and 2D domains, in which several interesting phenomena are found. Some open problems are discussed. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:688 / 704
页数:17
相关论文
共 50 条
  • [1] OPTIMAL CONTROL OF RESOURCE COEFFICIENT IN A PARABOLIC POPULATION MODEL
    Bintz, J.
    Finotti, H.
    Lenhart, S.
    BIOMAT 2013: INTERNATIONAL SYMPOSIUM ON MATHEMATICAL AND COMPUTATIONAL BIOLOGY, 2014, : 121 - 135
  • [2] Optimal Steady-State Control for Isolated Traffic Intersections
    Haddad, Jack
    De Schutter, Bart
    Mahalel, David
    Ioslovich, Ilya
    Gutman, Per-Olof
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (11) : 2612 - 2617
  • [3] Optimal Steady-State Voltage Control Using Gaussian Process Learning
    Pareek, Parikshit
    Yu, Weng
    Nguyen, Hung Dinh
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (10) : 7017 - 7027
  • [4] Optimal bounded control of steady-state random vibrations
    Dimentberg, MF
    Iourtchenko, DV
    Bratus, AS
    PROBABILISTIC ENGINEERING MECHANICS, 2000, 15 (04) : 381 - 386
  • [5] Optimal boundary control of a steady-state heat transfer model accounting for radiative effects
    Kovtanyuk, Audrey E.
    Chebotarev, Alexander Yu.
    Botkin, Nikolai D.
    Hoffmann, Karl-Heinz
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 439 (02) : 678 - 689
  • [6] Optimal Steady-State Regulation by State Feedback
    Hafez, Mohamed A.
    Uzeda, Erick Mejia
    Broucke, Mireille E.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (09) : 6042 - 6057
  • [7] Enhanced Model Predictive Control Using State Variable Feedback for Steady-State Error Cancellation
    Andreu, Marcos
    Rohten, Jaime
    Espinoza, Jose
    Silva, Jose
    Pulido, Esteban
    Leon, Lesyani
    SENSORS, 2024, 24 (18)
  • [8] Cooperation of model predictive control with steady-state economic optimisation
    Lawrynczuk, Maciej
    Marusak, Piotr M.
    Tatjewski, Piotr
    CONTROL AND CYBERNETICS, 2008, 37 (01): : 133 - 158
  • [9] Robustness of steady-state optimality in economic model predictive control
    Mueller, Matthias A.
    Allgoewer, Frank
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 1011 - 1016
  • [10] STEADY-STATE AND PERIODIC EXPONENTIAL TURNPIKE PROPERTY FOR OPTIMAL CONTROL PROBLEMS IN HILBERT SPACES
    Trelat, Emmanuel
    Zhang, Can
    Zuazua, Enrique
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (02) : 1222 - 1252