DOMAIN ADAPTING ABILITY OF SELF-SUPERVISED LEARNING FOR FACE RECOGNITION

被引:2
|
作者
Lin, Chun-Hsieh [1 ]
Wu, Bing-Fei [1 ]
机构
[1] Natl Chiao Tung Univ, Inst Elect & Control Engn, 1001 Univ Rd, Hsinchu 300, Taiwan
来源
2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2021年
关键词
Face recognition; domain adaptation; self-supervised learning;
D O I
10.1109/ICIP42928.2021.9506677
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although deep convolutional networks have achieved great performance in face recognition tasks, the challenge of domain discrepancy still exists in real world applications. Lack of domain coverage of training data (source domain) makes the learned models degenerate in a testing scenario (target domain). In face recognition tasks, classes in two domains are usually different, so classical domain adaptation approaches, assuming there are shared classes in domains, may not be reasonable solutions for this problem. In this paper, self-supervised learning is adopted to learn a better embedding space where the subjects in target domain are more distinguishable. The learning goal is maximizing the similarity between the embeddings of each image and its mirror in both domains. The experiments show its competitive results compared with prior works. To know the reason why it can achieve such performance, we further discuss how this approach affects the learning of embeddings.
引用
收藏
页码:479 / 483
页数:5
相关论文
共 50 条
  • [1] SSDL: Self-Supervised Domain Learning for Improved Face Recognition
    Arachchilage, Samadhi Wickrama
    Izquierdo, Ebroul
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 8117 - 8124
  • [2] Self-Supervised Learning of Face Representations for Video Face Clustering
    Sharma, Vivek
    Tapaswi, Makarand
    Sarfraz, M. Saquib
    Stiefelhagen, Rainer
    2019 14TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG 2019), 2019, : 360 - 367
  • [3] Self-supervised learning minimax entropy domain adaptation for the underwater target recognition
    Yang, Jirui
    Yan, Shefeng
    Zeng, Di
    Tan, Gang
    APPLIED ACOUSTICS, 2024, 216
  • [4] Supervised and Self-Supervised Learning for Assembly Line Action Recognition
    Indris, Christopher
    Ibrahim, Fady
    Ibrahem, Hatem
    Bramesfeld, Gotz
    Huo, Jie
    Ahmad, Hafiz Mughees
    Hayat, Syed Khizer
    Wang, Guanghui
    JOURNAL OF IMAGING, 2025, 11 (01)
  • [5] Video Face Clustering with Self-Supervised Representation Learning
    Sharma V.
    Tapaswi M.
    Saquib Sarfraz M.
    Stiefelhagen R.
    IEEE Transactions on Biometrics, Behavior, and Identity Science, 2020, 2 (02): : 145 - 157
  • [6] Enhancing Face Recognition With Detachable Self-Supervised Bypass Networks
    He, Mingjie
    Zhang, Jie
    Shan, Shiguang
    Chen, Xilin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 1588 - 1599
  • [7] Self-Supervised Learning for Domain Adaptation on Point Clouds
    Achituve, Idan
    Maron, Haggai
    Chechik, Gal
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, : 123 - 133
  • [8] Contrastive Self-Supervised Learning for Skeleton Action Recognition
    Gao, Xuehao
    Yang, Yang
    Du, Shaoyi
    NEURIPS 2020 WORKSHOP ON PRE-REGISTRATION IN MACHINE LEARNING, VOL 148, 2020, 148 : 51 - 61
  • [9] Self-supervised representation learning for surgical activity recognition
    Paysan, Daniel
    Haug, Luis
    Bajka, Michael
    Oelhafen, Markus
    Buhmann, Joachim M.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2021, 16 (11) : 2037 - 2044
  • [10] Self-Supervised Learning for Action Recognition by Video Denoising
    Thi Thu Trang Phung
    Thi Hong Thu Ma
    Van Truong Nguyen
    Duc Quang Vu
    2021 RIVF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES (RIVF 2021), 2021, : 76 - 81