Validation of the RayStation Monte Carlo dose calculation algorithm using a realistic lung phantom

被引:15
作者
Schreuder, Andries N. [1 ]
Bridges, Daniel S. [1 ]
Rigsby, Lauren [1 ]
Blakey, Marc [1 ]
Janson, Martin [2 ]
Hedrick, Samantha G. [1 ]
Wilkinson, John B. [1 ]
机构
[1] Provis Ctr Proton Therapy Knoxville, 6450 Provis Cares Way, Knoxville, TN 37909 USA
[2] RaySearch Labs, Sveavagen 44, SE-10365 Stockholm, Sweden
关键词
charged particle therapy; lung; Monte Carlo; pencil beam scanning; pencil-beam algorithm; radiation; PENCIL BEAM ALGORITHM; TISSUE HETEROGENEITIES; CALCULATION ACCURACY; PROTON; INHOMOGENEITY; THERAPY; SYSTEM; BODY;
D O I
10.1002/acm2.12777
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose Our purposes are to compare the accuracy of RaySearch's analytical pencil beam (APB) and Monte Carlo (MC) algorithms for clinical proton therapy and to present clinical validation data using a novel animal tissue lung phantom. Methods We constructed a realistic lung phantom composed of a rack of lamb resting on a stack of rectangular natural cork slabs simulating lung tissue. The tumor was simulated using 70% lean ground lamb meat inserted in a spherical hole with diameter 40 +/- 5 mm carved into the cork slabs. A single-field plan using an anterior beam and a two-field plan using two anterior-oblique beams were delivered to the phantom. Ion chamber array measurements were taken medial and distal to the tumor. Measured doses were compared with calculated RayStation APB and MC calculated doses. Results Our lung phantom enabled measurements with the MatriXX PT at multiple depths in the phantom. Using the MC calculations, the 3%/3 mm gamma index pass rates, comparing measured with calculated doses, for the distal planes were 74.5% and 85.3% for the APB and 99.1% and 92% for the MC algorithms. The measured data revealed up to 46% and 30% underdosing within the distal regions of the target volume for the single and the two field plans when APB calculations are used. These discrepancies reduced to less than 18% and 7% respectively using the MC calculations. Conclusions RaySearch Laboratories' Monte Carlo dose calculation algorithm is superior to the pencil-beam algorithm for lung targets. Clinicians relying on the analytical pencil-beam algorithm should be aware of its pitfalls for this site and verify dose prior to delivery. We conclude that the RayStation MC algorithm is reliable and more accurate than the APB algorithm for lung targets and therefore should be used to plan proton therapy for patients with lung cancer.
引用
收藏
页码:127 / 137
页数:11
相关论文
共 50 条
[1]   Recent developments in GEANT4 [J].
Allison, J. ;
Amako, K. ;
Apostolakis, J. ;
Arce, P. ;
Asai, M. ;
Aso, T. ;
Bagli, E. ;
Bagulya, A. ;
Banerjee, S. ;
Barrand, G. ;
Beck, B. R. ;
Bogdanov, A. G. ;
Brandt, D. ;
Brown, J. M. C. ;
Burkhardt, H. ;
Canal, Ph. ;
Cano-Ott, D. ;
Chauvie, S. ;
Cho, K. ;
Cirrone, G. A. P. ;
Cooperman, G. ;
Cortes-Giraldo, M. A. ;
Cosmo, G. ;
Cuttone, G. ;
Depaola, G. ;
Desorgher, L. ;
Dong, X. ;
Dotti, A. ;
Elvira, V. D. ;
Folger, G. ;
Francis, Z. ;
Galoyan, A. ;
Garnier, L. ;
Gayer, M. ;
Genser, K. L. ;
Grichine, V. M. ;
Guatelli, S. ;
Gueye, P. ;
Gumplinger, P. ;
Howard, A. S. ;
Hrivnacova, I. ;
Hwang, S. ;
Incerti, S. ;
Ivanchenko, A. ;
Ivanchenko, V. N. ;
Jones, F. W. ;
Jun, S. Y. ;
Kaitaniemi, P. ;
Karakatsanis, N. ;
Karamitrosi, M. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 835 :186-225
[2]  
American Cancer Society, 2018, FACTS FIG 2018
[3]  
Bagdare P, 2018, J MED PHYS, V43, P14
[4]   Proton Beam Therapy for Non-Small Cell Lung Cancer: Current Clinical Evidence and Future Directions [J].
Berman, Abigail T. ;
James, Sara St. ;
Rengan, Ramesh .
CANCERS, 2015, 7 (03) :1178-1190
[5]   Moving targets in 4D-CTs versus MIP and AIP: comparison of patients data to phantom data [J].
Borm, Kai Joachim ;
Oechsner, Markus ;
Wiegandt, Moritz ;
Hofmeister, Andreas ;
Combs, Stephanie E. ;
Duma, Marciana Nona .
BMC CANCER, 2018, 18
[6]  
Branco D, 2017, P 4 ANN C PART THER
[7]   Detection of artificial pulmonary lung nodules in ultralow-dose CT using an ex vivo lung phantom [J].
Burgard, Caroline Alexandra ;
Gaass, Thomas ;
Bonert, Madeleine ;
Bondesson, David ;
Thaens, Natalie ;
Reiser, Maximilian Ferdinand ;
Dinkel, Julien .
PLOS ONE, 2018, 13 (01)
[8]   Evaluation of an electron Monte Carlo dose calculation algorithm for treatment planning [J].
Chamberland, Eve ;
Beaulieu, Luc ;
Lachance, Bernard .
JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2015, 16 (03) :60-79
[9]   A Comparison of physical and dosimetric properties of lung substitute materials [J].
Chang, Kwo-Ping ;
Hung, Shang-Ho ;
Chie, Yu-Huang ;
Shiau, An-Cheng ;
Huang, Ruey-Jing .
MEDICAL PHYSICS, 2012, 39 (04) :2013-2020
[10]   Optimal Dose Levels in Screening Chest CT for Unimpaired Detection and Volumetry of Lung Nodules, with and without Computer Assisted Detection at Minimal Patient Radiation [J].
Christe, Andreas ;
Szucs-Farkas, Zsolt ;
Huber, Adrian ;
Steiger, Philipp ;
Leidolt, Lars ;
Roos, Justus E. ;
Heverhagen, Johannes ;
Ebner, Lukas .
PLOS ONE, 2013, 8 (12)