An interactive evolutionary approach for content based image retrieval

被引:2
作者
Arevalillo-Herraez, Miguel [1 ]
Ferri, Francesc J. [1 ]
Moreno-Picot, Salvador [1 ]
机构
[1] Univ Valencia, Dept Informat, E-46100 Burjassot, Spain
来源
2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9 | 2009年
关键词
RELEVANCE FEEDBACK; SYSTEM;
D O I
10.1109/ICSMC.2009.5346135
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Content Based Image Retrieval (CBIR) systems aim to provide a means to find pictures in large repositories without using any other information except its contents usually as low-level descriptors. Since these descriptors do not exactly match the high level semantics of the image, assessing perceptual similarity between two pictures using only their feature vectors is not a trivial task. In fact, the ability of a system to induce high level semantic concepts from the feature vector of an image is one of the aspects which most influences its performance. This paper describes a CBER algorithm which combines relevance feedback, evolutionary computation concepts and ad-hoc strategies in an attempt to fill the existing gap between the high level semantic content of the images and the information provided by the low level descriptors.
引用
收藏
页码:120 / 125
页数:6
相关论文
共 26 条
[1]  
[Anonymous], 1973, Evolutions Strategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution Stuttgart
[2]  
[Anonymous], 2003, Morphological Image Analysis: Principles and Applications
[3]  
BISSOL S, 2003, CONTENT BASED MULTIM, P87
[4]  
BU QK, 2008, FOOTBALLS VIDEO SCEN, V2, P500
[5]   A human-oriented image retrieval system using interactive genetic algorithm. [J].
Cho, SB ;
Lee, JY .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2002, 32 (03) :452-458
[6]   A new evolutionary algorithm combining simulated annealing and genetic programming for relevance feedback in fuzzy information retrieval systems [J].
O. Cordón ;
F. Moya ;
C. Zarco .
Soft Computing, 2002, 6 (5) :308-319
[7]   The Bayesian image retrieval system, PicHunter:: Theory, implementation, and psychophysical experiments [J].
Cox, IJ ;
Miller, ML ;
Minka, TP ;
Papathomas, TV ;
Yianilos, PN .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (01) :20-37
[8]  
Darwin C., 1973, ORIGIN SPECIES
[9]   A novel Bayesian framework for relevance feedback in image content-based retrieval systems [J].
de Ves, E. ;
Domingo, J. ;
Ayala, G. ;
Zuccarello, P. .
PATTERN RECOGNITION, 2006, 39 (09) :1622-1632
[10]  
GORDON MD, 1991, J AM SOC INFORM SCI, V42, P311, DOI 10.1002/(SICI)1097-4571(199106)42:5<311::AID-ASI1>3.0.CO