Multiscale permutation Renyi entropy and its application for EEG signals

被引:18
作者
Yin, Yinghuang [1 ]
Sun, Kehui [1 ]
He, Shaobo [2 ]
机构
[1] Cent S Univ, Sch Phys & Elect, Changsha, Hunan, Peoples R China
[2] Hunan Univ Arts & Sci, Sch Comp Sci & Technol, Changde, Peoples R China
基金
中国国家自然科学基金;
关键词
TIME-SERIES; APPROXIMATE ENTROPY; COMPLEXITY ANALYSIS; ALZHEIMERS-DISEASE; BRAIN ACTIVITY; ELECTROENCEPHALOGRAM; EPILEPSY; APEN;
D O I
10.1371/journal.pone.0202558
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
There is considerable interest in analyzing the complexity of electroencephalography (EEG) signals. However, some traditional complexity measure algorithms only quantify the complexities of signals, but cannot discriminate different signals very well. To analyze the complexity of epileptic EEG signals better, a new multiscale permutation Renyi entropy (MPEr) algorithm is proposed. In this algorithm, the coarse-grained procedure is introduced by using weighting-averaging method, and the weighted factors are determined by analyzing nonlinear signals. We apply the new algorithm to analyze epileptic EEG signals. The experimental results show that MPEr algorithm has good performance for discriminating different EEG signals. Compared with permutation Re A nyi entropy (PEr) and multiscale permutation entropy (MPE), MPEr distinguishes different EEG signals successfully. The proposed MPEr algorithm is effective and has good applications prospects in EEG signals analysis.
引用
收藏
页数:15
相关论文
共 46 条
[1]   Nonlinear Dynamics Measures for Automated EEG-Based Sleep Stage Detection [J].
Acharya, U. Rajendra ;
Bhat, Shreya ;
Faust, Oliver ;
Adeli, Hojjat ;
Chua, Eric Chern-Pin ;
Lim, Wei Jie Eugene ;
Koh, Joel En Wei .
EUROPEAN NEUROLOGY, 2015, 74 (5-6) :268-287
[2]   Application of entropies for automated diagnosis of epilepsy using EEG signals: A review [J].
Acharya, U. Rajendra ;
Fujita, H. ;
Sudarshan, Vidya K. ;
Bhat, Shreya ;
Koh, Joel E. W. .
KNOWLEDGE-BASED SYSTEMS, 2015, 88 :85-96
[3]   Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state [J].
Andrzejak, RG ;
Lehnertz, K ;
Mormann, F ;
Rieke, C ;
David, P ;
Elger, CE .
PHYSICAL REVIEW E, 2001, 64 (06) :8-061907
[4]   Permutation entropy: A natural complexity measure for time series [J].
Bandt, C ;
Pompe, B .
PHYSICAL REVIEW LETTERS, 2002, 88 (17) :4
[5]   Speed and complexity characterize attention problems in children with localization-related epilepsy [J].
Berl, Madison M. ;
Terwilliger, Virginia ;
Scheller, Alexandra ;
Sepeta, Leigh ;
Walkowiak, Jenifer ;
Gaillard, William D. .
EPILEPSIA, 2015, 56 (06) :833-840
[6]  
Bhardwaj S, 2015, IEEE ENG MED BIO, P6784, DOI 10.1109/EMBC.2015.7319951
[7]   Electroencephalogram approximate entropy correctly classifies the occurrence of burst suppression pattern as increasing anesthetic drug effect [J].
Bruhn, J ;
Röpcke, H ;
Rehberg, B ;
Bouillon, T ;
Hoeft, A .
ANESTHESIOLOGY, 2000, 93 (04) :981-985
[8]   Dimensional complexity of the EEG in patients with posttraumatic stress disorder [J].
Chae, JH ;
Jeong, JS ;
Peterson, BS ;
Kim, DJ ;
Bahk, WM ;
Jun, TY ;
Kim, SY ;
Kim, KS .
PSYCHIATRY RESEARCH-NEUROIMAGING, 2004, 131 (01) :79-89
[9]   Improving EEG-Based Driver Fatigue Classification Using Sparse-Deep Belief Networks [J].
Chai, Rifai ;
Ling, Sai Ho ;
San, Phyo Phyo ;
Naik, Ganesh R. ;
Nguyen, Tuan N. ;
Tran, Yvonne ;
Craig, Ashley ;
Nguyen, Hung T. .
FRONTIERS IN NEUROSCIENCE, 2017, 11
[10]   Driver Fatigue Classification With Independent Component by Entropy Rate Bound Minimization Analysis in an EEG-Based System [J].
Chai, Rifai ;
Naik, Ganesh R. ;
Tuan Nghia Nguyen ;
Ling, Sai Ho ;
Tran, Yvonne ;
Craig, Ashley ;
Nguyen, Hung T. .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2017, 21 (03) :715-724