Impedance modelling of porous electrode structures in polymer electrolyte membrane fuel cells

被引:67
作者
Heinzmann, Marcel [1 ]
Weber, Andre [1 ]
Ivers-Tiffee, Ellen. [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Appl Mat IAM WET, Adenauerring 20b, D-76131 Karlsruhe, Germany
关键词
Polymer electrolyte membrane fuel cell; Electrochemical impedance spectroscopy; Distribution of relaxation times; Equivalent circuit model; Transmission line model; Ionic conductivity; OXYGEN REDUCTION REACTION; CATHODE CATALYST LAYER; ELECTROCHEMICAL IMPEDANCE; CHARGE-TRANSFER; SPECTROSCOPY; PARAMETERS; RESISTANCE; KINETICS; DECONVOLUTION; SPECTRA;
D O I
10.1016/j.jpowsour.2019.227279
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical Impedance Spectroscopy (EIS) is a suitable tool for identifying the performance-related polarization processes in a polymer electrolyte membrane fuel cell. A physically meaningful impedance model is needed when drawing conclusions about further cell improvement. This study focuses on, the characterization of the porous electrode structure by applying a transmission line model (TLM) to the measured spectra. The fitting procedure is supported by the distribution of relaxation times (DRT) method enabling a separation of loss processes by their individual time constants. We are able to separate and quantify (i) the gas diffusion in the porous media (2-10 Hz), (ii) the charge transfer resistance at the Pt catalyst (2-200 Hz), and (iii) the ionic transport resistance in the catalyst layer (300-30,000 Hz), across a broad range of operating conditions (current density, relative humidity, gas compositions). The TLM approach directly reveals the electrodes' transport and reaction properties, e.g. ionic conductivity and the Tafel slope. Under high electrical load the ionic transport losses in the catalyst layer contribute more to polarization than expected. Interestingly, the oxygen reduction reaction is found to be describable with a single, current-independent Tafel slope.
引用
收藏
页数:10
相关论文
共 44 条
[1]   Influence of the boundaries in the impedance of porous film electrodes [J].
Bisquert, J .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2000, 2 (18) :4185-4192
[2]   A LINEAR KRONIG-KRAMERS TRANSFORM TEST FOR IMMITTANCE DATA VALIDATION [J].
BOUKAMP, BA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (06) :1885-1894
[3]   The geometry dependence of the polarization resistance of Sr-doped LaMnO3 microelectrodes on yttria-stabilized zirconia [J].
Brichzin, V ;
Fleig, J ;
Habermeier, HU ;
Cristiani, G ;
Maier, J .
SOLID STATE IONICS, 2002, 152 :499-507
[4]   Investigation of Proton Transport in the Catalyst Layer of PEM Fuel Cells by Electrochemical Impedance Spectroscopy [J].
Cimenti, M. ;
Bessarabov, D. ;
Tam, M. ;
Stumper, J. .
ELECTRODE PROCESSES RELEVANT TO FUEL CELL TECHNOLOGY, 2010, 28 (23) :147-157
[5]   Characterizing Through-Plane and In-plane Ionic Conductivity of Polymer Electrolyte Membranes [J].
Cooper, Kevin R. .
POLYMER ELECTROLYTE FUEL CELLS 11, 2011, 41 (01) :1371-1380
[6]   Advanced impedance model for double-layered solid oxide fuel cell cermet anodes [J].
Dierickx, Sebastian ;
Mundloch, Timo ;
Weber, Andre ;
Ivers-Tiffee, Ellen .
JOURNAL OF POWER SOURCES, 2019, 415 :69-82
[7]   Advanced impedance modelling of Ni/8YSZ cermet anodes [J].
Dierickx, Sebastian ;
Joos, Jochen ;
Weber, Andre ;
Ivers-Tiffee, Ellen .
ELECTROCHIMICA ACTA, 2018, 265 :736-750
[8]   Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells [J].
Eikerling, M ;
Kornyshev, AA .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1999, 475 (02) :107-123
[9]  
Euler J., 1960, ELECTROCHIM ACTA, V2, P268
[10]   Model based PEM fuel cell state-of-health monitoring via ac impedance measurements [J].
Fouquet, N. ;
Doulet, C. ;
Nouillant, C. ;
Dauphin-Tanguy, G. ;
Ould-Bouamama, B. .
JOURNAL OF POWER SOURCES, 2006, 159 (02) :905-913