Underwater Image Super-resolution Using SRCNN

被引:1
|
作者
Ooyama, Shinnosuke [1 ]
Lu, Huimin [1 ]
Kamiya, Tohru [1 ]
Serikawa, Seiichi [1 ]
机构
[1] Kyushu Inst Technol, Sch Engn, Kitakyushu, Fukuoka 8048550, Japan
关键词
Super-resolution; Underwater image; Loss function; Deep convolutional neural network; ENHANCEMENT;
D O I
10.1117/12.2603761
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, energy minerals have become more important due to the rapid industrialization worldwide. Due to the rapid industrialization on a global scale, there is a shortage of mineral resources, and there are more opportunities to rely on alternative energy sources. Therefore, the exploration of marine resources, which are abundant in the ocean, is being promoted. However, it is dangerous and impractical for humans to dive and search for marine resources by hand Therefore, it is possible to proceed with underwater exploration safely by having a robot do the work instead. Robots have been used as a mainstream search tool in the underwater environment due to the existence of various hazardous environmental conditions. However, there are several problems associated with robot control in underwater environments, one of which is poor visibility in the water. One of the problems is the poor visibility in the water. To improve the visibility in the water, we are trying to increase the resolution of underwater images by using super-resolution technology. In this paper, we conduct experiments using SRCNN, which is a basic super-resolution technique for underwater images. In addition, we investigate the effectiveness of "Mish", which has been attracting attention in recent years for its potential to surpass the performance of "ReLU", although "ReLU" is a typical activation function of neural networks, on SRCNN.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Super-Resolution Reconstruction of Underwater Image Based on Image Sequence Generative Adversarial Network
    Li, Li
    Fan, Zijia
    Zhao, Mingyang
    Wang, Xinlei
    Wang, Zhongyang
    Wang, Zhiqiong
    Guo, Longxiang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [22] Strategy to acquire high resolution PET images with Super-Resolution Convolutional Neural Network (SRCNN)
    Katoh, Chietsugu
    Daiki, Endo
    Magota, Keiichi
    Manabe, Osamu
    Hirata, Kenji
    JOURNAL OF NUCLEAR MEDICINE, 2020, 61
  • [23] Super-resolution inducing of an image
    Calle, D
    Montanvert, A
    1998 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL 3, 1998, : 232 - 236
  • [24] Epitomic Image Super-Resolution
    Yang, Yingzhen
    Wang, Zhangyang
    Wang, Zhaowen
    Chang, Shiyu
    Liu, Ding
    Shi, Honghui
    Huang, Thomas S.
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 4278 - 4279
  • [25] Super-resolution reconstruction of an image
    Elad, M
    Feuer, A
    NINETEENTH CONVENTION OF ELECTRICAL AND ELECTRONICS ENGINEERS IN ISRAEL, 1996, : 391 - 394
  • [26] Image super-resolution survey
    van Ouwerkerk, J. D.
    IMAGE AND VISION COMPUTING, 2006, 24 (10) : 1039 - 1052
  • [27] Super-resolution image reconstruction
    Kang, MG
    Chaudhuri, S
    IEEE SIGNAL PROCESSING MAGAZINE, 2003, 20 (03) : 19 - 20
  • [28] Research on Super-resolution of Image
    Zheng Genrang
    2011 INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND NEURAL COMPUTING (FSNC 2011), VOL IV, 2011, : 119 - 122
  • [29] Research on Super-resolution of Image
    Zheng Genrang
    2011 AASRI CONFERENCE ON INFORMATION TECHNOLOGY AND ECONOMIC DEVELOPMENT (AASRI-ITED 2011), VOL 1, 2011, : 119 - 122
  • [30] Super-resolution image pyramid
    Lu, Y
    Inamura, M
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2003, E86D (08) : 1436 - 1446