High shear rate propulsion of acoustic microrobots in complex biological fluids

被引:96
作者
Aghakhani, Amirreza [1 ]
Pena-Francesch, Abdon [1 ,2 ]
Bozuyuk, Ugur [1 ,3 ]
Cetin, Hakan [1 ,4 ]
Wrede, Paul [1 ]
Sitti, Metin [1 ,3 ,5 ,6 ]
机构
[1] Max Planck Inst Intelligent Syst, Phys Intelligence Dept, D-70569 Stuttgart, Germany
[2] Univ Michigan, Robot Inst, Macromol Sci & Engn, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
[3] Swiss Fed Inst Technol, Inst Biomed Engn, CH-8092 Zurich, Switzerland
[4] Ozyegin Univ, Elect & Elect Engn Dept, TR-34794 Istanbul, Turkey
[5] Koc Univ, Sch Med, TR-34450 Istanbul, Turkey
[6] Koc Univ, Coll Engn, TR-34450 Istanbul, Turkey
关键词
DRIVEN; SOFT; DYNAMICS; FORCES; MUCUS;
D O I
10.1126/sciadv.abm5126
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Untethered microrobots offer a great promise for localized targeted therapy in hard-to-access spaces in our body. Despite recent advancements, most microrobot propulsion capabilities have been limited to homogenous Newtonian fluids. However, the biological fluids present in our body are heterogeneous and have shear rate-dependent rheological properties, which limit the propulsion of microrobots using conventional designs and actuation methods. We propose an acoustically powered microrobotic system, consisting of a three-dimensionally printed 30-micrometer-diameter hollow body with an oscillatory microbubble, to generate high shear rate fluidic flow for propulsion in complex biofluids. The acoustically induced microstreaming flow leads to distinct surface-slipping and puller-type propulsion modes in Newtonian and non-Newtonian fluids, respectively. We demonstrate efficient propulsion of the microrobots in diverse biological fluids, including in vitro navigation through mucus layers on biologically relevant three-dimensional surfaces. The microrobot design and high shear rate propulsion mechanism discussed herein could open new possibilities to deploy microrobots in complex biofluids toward minimally invasive targeted therapy.
引用
收藏
页数:11
相关论文
共 66 条
[1]  
Abbott JJ, 2020, ANNU REV CONTR ROBOT, V3, P57, DOI [10.1146/annurev-control-081219-082713, 10.1146/annurev-control-081219082713]
[2]   Flexural wave-based soft attractor walls for trapping microparticles and cells [J].
Aghakhani, Amirreza ;
Cetin, Hakan ;
Erkoc, Pelin ;
Tombak, Guney Isik ;
Sitti, Metin .
LAB ON A CHIP, 2021, 21 (03) :582-596
[3]   Acoustically powered surface-slipping mobile microrobots [J].
Aghakhani, Amirreza ;
Yasa, Oncay ;
Wrede, Paul ;
Sitti, Metin .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (07) :3469-3477
[4]   Artificial Swimmers Propelled by Acoustically Activated Flagella [J].
Ahmed, Daniel ;
Baasch, Thierry ;
Jang, Bumjin ;
Pane, Salvador ;
Dual, Juerg ;
Nelson, Bradley J. .
NANO LETTERS, 2016, 16 (08) :4968-4974
[5]   Selectively manipulable acoustic-powered microswimmers [J].
Ahmed, Daniel ;
Lu, Mengqian ;
Nourhani, Amir ;
Lammert, Paul E. ;
Stratton, Zak ;
Muddana, Hari S. ;
Crespi, Vincent H. ;
Huang, Tony Jun .
SCIENTIFIC REPORTS, 2015, 5
[6]   Multifunctional surface microrollers for targeted cargo delivery in physiological blood flow [J].
Alapan, Yunus ;
Bozuyuk, Ugur ;
Erkoc, Pelin ;
Karacakol, Alp Can ;
Sitti, Metin .
SCIENCE ROBOTICS, 2020, 5 (42)
[7]   Shape-encoded dynamic assembly of mobile micromachines [J].
Alapan, Yunus ;
Yigit, Berk ;
Beker, Onur ;
Demirors, Ahmet F. ;
Sitti, Metin .
NATURE MATERIALS, 2019, 18 (11) :1244-+
[8]   Chemical modification of drug molecules as strategy to reduce interactions with mucus [J].
Araujo, Francisca ;
Martins, Claudia ;
Azevedo, Claudia ;
Sarmento, Bruno .
ADVANCED DRUG DELIVERY REVIEWS, 2018, 124 :98-106
[9]   Sound Technologies, Sound Bodies [J].
Arbabian, Amin ;
Chang, Ting Chia ;
Wang, Max L. ;
Charthad, Jayant ;
Baltsavias, Spyridon ;
Fallahpour, Mojtaba ;
Weber, Marcus J. .
IEEE MICROWAVE MAGAZINE, 2016, 17 (12) :39-54
[10]   Propulsion of Bubble-Based Acoustic Microswimmers [J].
Bertin, Nicolas ;
Spelman, Tamsin A. ;
Stephan, Olivier ;
Gredy, Laetitia ;
Bouriau, Michel ;
Lauga, Eric ;
Marmottant, Philippe .
PHYSICAL REVIEW APPLIED, 2015, 4 (06)