Lie analysis, conserved vectors, nonlinear self-adjoint classification and exact solutions of generalized (N

被引:6
作者
Hussain, Amjad [1 ]
Zia, Muhammad Khubaib [1 ]
Nisar, Kottakkaran Sooppy [2 ]
Vijayakumar, Velusamy [3 ]
Khan, Ilyas [4 ]
机构
[1] Quaid I Azam Univ, Dept Math, Islamabad 45320, Pakistan
[2] Prince Sattam Bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawaser 11991, Saudi Arabia
[3] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore 632014, Tamil Nadu, India
[4] Majmaah Univ, Coll Sci Al Zulfi, Dept Math, Al Majmaah 11952, Saudi Arabia
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 07期
关键词
generalized Boussinesq equation; Lie symmetry analysis; nonlinear self-adjointness; (G; '/G; 1/G) expansion method; conservation laws; KADOMTSEV-PETVIASHVILI EQUATION; PERIODIC-WAVE SOLUTIONS; BOUSSINESQ EQUATION; LAWS; SOLITONS;
D O I
10.3934/math.2022725
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, the generalized (N + 1)-dimensional nonlinear Boussinesq equation is analyzed via Lie symmetry method. Lie point symmetries of the considered equation and accompanying invariant groups are computed. After transforming the equation into a nonlinear ordinary differential equation (ODE), analytical solutions of various types are obtained using the (G'/G, 1/G) expansion method. The concept of nonlinear self-adjointness is used in order to determine nonlocal conservation laws of the equation in lower dimensions. By selecting the appropriate parameter values, the study provides a graph of the solutions to the equation under study.
引用
收藏
页码:13139 / 13168
页数:30
相关论文
共 63 条
[1]   Optical solitons and other solutions to Kaup-Newell equation with Jacobi elliptic function expansion method [J].
Ahmed, Hamdy M. ;
Rabie, Wafaa B. ;
Ragusa, Maria Alessandra .
ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (01)
[2]   Adequate soliton solutions to the perturbed Boussinesq equation and the KdV-Caudrey-Dodd-Gibbon equation [J].
Akbar, M. Ali ;
Ali, Norhashidah Hj. Mohd ;
Tanjim, Tasnim .
JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2020, 32 (06) :2777-2785
[3]  
Alam M. N., 2013, CHINESE PHYS B, V23
[4]   Lie symmetry analysis and invariant solutions for (2+1) dimensional Bogoyavlensky-Konopelchenko equation with variable-coefficient in wave propagation [J].
Ali, Mohamed R. ;
Ma, Wen-Xiu ;
Sadat, R. .
JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2022, 7 (03) :248-254
[5]  
[Anonymous], 1872, J. Math. Pure Appl
[6]  
Arrigo D.J., 2015, Symmetry Analysis of Differential Equations: An Introduction
[7]   Analytic combined bright-dark, bright and dark solitons solutions of generalized nonlinear Schrodinger equation using extended Sinh-Gordon equation expansion method [J].
Bezgabadi, A. Safaei ;
Bolorizadeh, M. A. .
RESULTS IN PHYSICS, 2021, 30
[8]   Research on nonlinear waves of blood flow in arterial vessels [J].
Bi, Yuanhong ;
Zhang, Zongguo ;
Liu, Quansheng ;
Liu, Tiejun .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 102
[9]   NEW SIMILARITY REDUCTIONS OF THE BOUSSINESQ EQUATION [J].
CLARKSON, PA ;
KRUSKAL, MD .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (10) :2201-2213
[10]  
Darvishi MT, 2018, ROM REP PHYS, V70