Asymptotically periodic solutions of Volterra system of difference equations

被引:26
作者
Diblik, Josef [2 ]
Schmeidel, Ewa [1 ]
Ruzickova, Miroslava [2 ]
机构
[1] Poznan Univ Tech, Poznan, Poland
[2] Univ Zilina, Zilina, Slovakia
关键词
Volterra difference system; Asymptotically periodic solution;
D O I
10.1016/j.camwa.2010.01.055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Volterra system of difference equations of the form x(s)(n + 1) = a(s)(n) + b(s)(n)x(s)(n) + Sigma(r)(p=1)Sigma(n)(i=0) K-sp(n, i)x(p)(i) where n is an element of N, a(s,) B-s, x(s): N -> R and K-sp: N x N -> R, s = 1, 2, .... , r is studied. Sufficient conditions for the existence of asymptotically periodic solutions of this system are derived. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2854 / 2867
页数:14
相关论文
共 14 条
[1]   PERIODIC-SOLUTIONS OF FIRST-ORDER LINEAR DIFFERENCE-EQUATIONS [J].
AGARWAL, RP ;
POPENDA, J .
MATHEMATICAL AND COMPUTER MODELLING, 1995, 22 (01) :11-19
[2]  
[Anonymous], 2000, DIFFERENCE EQUATIONS, DOI DOI 10.1201/9781420027020
[3]   On exact convergence rates for solutions of linear systems of Volterra difference equations [J].
Applelby, John A. D. ;
Gyori, Istvan ;
Reynolds, David W. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2006, 12 (12) :1257-1275
[4]  
DIBLIK J, 2007, BERICHTE MATH, V5, P1
[5]  
Elaydi S., 1998, J. Differ.Equations Appl, V3, P203, DOI DOI 10.1080/
[6]  
Elaydi S., 2005, INTRO DIFFERENCE EQU
[7]   Periodic solutions of Volterra difference equations and attractivity [J].
Furumochi, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (06) :4013-4024
[8]  
Furumochi T., 2002, VIETNAM J MATH, V30, P537
[9]  
Kocic VL., 1993, MATH ITS APPL
[10]   Asymptotic properties of solutions of some Volterra difference equations and second-order difference equations [J].
Morchalo, Jaroslaw ;
Szmanda, A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) :E801-E811