Hydrostatic pressure effects on the structural and electronic properties of carbon nanotubes

被引:92
作者
Capaz, RB
Spataru, CD
Tangney, P
Cohen, ML
Louie, SG
机构
[1] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Sci Mat, Berkeley, CA 94720 USA
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2004年 / 241卷 / 14期
基金
美国国家科学基金会;
关键词
D O I
10.1002/pssb.200405253
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We study the structural and electronic properties of isolated single-wall carbon nanotubes (SWNTs) under hydrostatic pressure using a combination of theoretical techniques: Continuum elasticity models, classical molecular dynamics simulations, tight-binding electronic structure methods, and first-principles total energy calculations within the density-functional and pseudopotential frameworks. For pressures below a certain critical pressure P-c, the SWNTs' structure remains cylindrical and the Kohn-Sham energy gaps of semiconducting SWNTs have either positive or negative pressure coefficients depending on the value of (n, m), with a distinct "family" (of the same n - m) behavior. The diameter and chirality dependence of the pressure coefficients can be described by a simple analytical expression. At P-c, molecular-dynamics simulations predict that isolated SWNTs undergo a pressure-induced symmetry-breaking transformation from a cylindrical shape to a collapsed geometry. This transition is described by a simple elastic model as arising from the competition between the bond-bending and PV terms in the enthalpy. The good agreement between calculated and experimental values of P-c provides a strong support to the "collapse" interpretation of the experimental transitions in bundles. (C) 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:3352 / 3359
页数:8
相关论文
共 41 条
  • [1] Carbon nanotubes - the route toward applications
    Baughman, RH
    Zakhidov, AA
    de Heer, WA
    [J]. SCIENCE, 2002, 297 (5582) : 787 - 792
  • [2] A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons
    Brenner, DW
    Shenderova, OA
    Harrison, JA
    Stuart, SJ
    Ni, B
    Sinnott, SB
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (04) : 783 - 802
  • [3] Electronic properties of carbon nanotubes with polygonized cross sections
    Charlier, JC
    Lambin, P
    Ebbesen, TW
    [J]. PHYSICAL REVIEW B, 1996, 54 (12) : R8377 - R8380
  • [4] Mechanical energy storage in carbon nanotube springs
    Chesnokov, SA
    Nalimova, VA
    Rinzler, AG
    Smalley, RE
    Fischer, JE
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (02) : 343 - 346
  • [5] Dresselhaus M. S., 2001, Topics in Applied Physics, V80
  • [6] Collapse of single-wall carbon nanotubes is diameter dependent
    Elliott, JA
    Sandler, JKW
    Windle, AH
    Young, RJ
    Shaffer, MSP
    [J]. PHYSICAL REVIEW LETTERS, 2004, 92 (09) : 095501 - 1
  • [7] Mechanical and electromechanical coupling in carbon nanotube distortions
    Gartstein, YN
    Zakhidov, AA
    Baughman, RH
    [J]. PHYSICAL REVIEW B, 2003, 68 (11):
  • [8] Reversible band-gap engineering in carbon nanotubes by radial deformation -: art. no. 155410
    Gülseren, O
    Yildirim, T
    Ciraci, S
    Kiliç, Ç
    [J]. PHYSICAL REVIEW B, 2002, 65 (15) : 1554101 - 1554107
  • [9] Harrison WA., 1989, Electronic structure and properties of solids. The physics of the chemical bond
  • [10] Uniaxial-stress effects on the electronic properties of carbon nanotubes
    Heyd, R
    Charlier, A
    McRae, E
    [J]. PHYSICAL REVIEW B, 1997, 55 (11) : 6820 - 6824