Clinical Profile, Prognostic Factors, and Outcome Prediction in Hospitalized Patients With Bloodstream Infection: Results From a 10-Year Prospective Multicenter Study

被引:18
作者
Jin, Longyang [1 ]
Zhao, Chunjiang [1 ]
Li, Henan [1 ]
Wang, Ruobing [1 ]
Wang, Qi [1 ]
Wang, Hui [1 ]
机构
[1] Peking Univ, Peoples Hosp, Dept Clin Lab, Beijing, Peoples R China
关键词
bacterial bloodstream infection; mortality; pathogenic spectrum; prediction model; prognostic factors; RESISTANCE;
D O I
10.3389/fmed.2021.629671
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Bloodstream infection (BSI) is one of the most common serious bacterial infections worldwide and also a major contributor to in-hospital mortality. Determining the predictors of mortality is crucial for prevention and improving clinical prognosis in patients with nosocomial BSI. Methods: A nationwide prospective cohort study was conducted from 2007 until 2016 in 16 teaching hospitals across China. Microbiological results, clinical information, and patient outcomes were collected to investigate the pathogenic spectrum and mortality rate in patients with BSI and identify outcome predictors using multivariate regression, prediction model, and Kaplan-Meier analysis. Results: No significant change was observed in the causative pathogen distribution during the 10-year period and the overall in-hospital mortality was 12.83% (480/3,741). An increased trend was found in the mortality of patients infected with Pseudomonas aeruginosa or Acinetobacter baumannii, while a decreased mortality rate was noted in Staphylococcus aureus-related BSI. In multivariable-adjusted models, higher mortality rate was significantly associated with older age, cancer, sepsis diagnosis, ICU admission, and prolonged hospital stay prior to BSI onset, which were also determined using machine learning-based predictive model achieved by random forest algorithm with a satisfactory performance in outcome prediction. Conclusions: Our study described the clinical and microbiological characteristics and mortality predictive factors in patients with BSI. These informative predictors would inform clinical practice to adopt effective therapeutic strategies to improve patient outcomes.
引用
收藏
页数:8
相关论文
共 25 条
  • [1] Predictors of mortality and clinical characteristics among carbapenem-resistant or carbapenemase-producing Enterobacteriaceae bloodstream infections in Spanish children
    Ara-Montojo, M. F.
    Escosa-Garcia, L.
    Alguacil-Guillen, M.
    Seara, N.
    Zozaya, C.
    Plaza, D.
    Schuffelmann-Gutierrez, C.
    de la Vega, A.
    Fernandez-Camblor, C.
    Ramos-Boluda, E.
    Romero-Gomez, M. P.
    Ruiz-Carrascoso, G.
    Losantos-Garcia, I
    Mellado-Pena, M. J.
    Gomez-Gil, R.
    [J]. JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2021, 76 (01) : 220 - 225
  • [2] Risk factors for mortality among patients with Pseudomonas aeruginosa bacteraemia: a retrospective multicentre study
    Babich, Tanya
    Naucler, Pontus
    Valik, John Karlsson
    Giske, Christian G.
    Benito, Natividad
    Cardona, Ruben
    Rivera, Alba
    Pulcini, Celine
    Fattah, Manal Abdel
    Haquin, Justine
    MacGowan, Alasdair
    Grier, Sally
    Chazan, Bibiana
    Yanovskay, Anna
    Ben Ami, Ronen
    Landes, Michal
    Nesher, Lior
    Zaidman-Shimshovitz, Adi
    McCarthy, Kate
    Paterson, David L.
    Tacconelli, Evelina
    Buhl, Michael
    Maurer, Susanna
    Rodriguez-Bano, Jesus
    Morales, Isabel
    Oliver, Antonio
    Ruiz de Gopegui, Enrique
    Cano, Angela
    Machuca, Isabel
    Gozalo-Marguello, Monica
    Martinez-Martinez, Luis
    Gonzalez-Barbera, Eva M.
    Gomez Alfaro, Iris
    Salavert, Miguel
    Beovic, Bojana
    Saje, Andreja
    Mueller-Premru, Manica
    Pagani, Leonardo
    Vitrat, Virginie
    Kofteridis, Diamantis
    Zacharioudaki, Maria
    Maraki, Sofia
    Weissman, Yulia
    Paul, Mical
    Dickstein, Yaakov
    Leibovici, Leonard
    Yahav, Dafna
    [J]. INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2020, 55 (02)
  • [3] Sepsis and septic shock
    Cecconi, Maurizio
    Evans, Laura
    Levy, Mitchell
    Rhodes, Andrew
    [J]. LANCET, 2018, 392 (10141) : 75 - 87
  • [4] Multicenter Comparison of Machine Learning Methods and Conventional Regression for Predicting Clinical Deterioration on the Wards
    Churpek, Matthew M.
    Yuen, Trevor C.
    Winslow, Christopher
    Meltzer, David O.
    Kattan, Michael W.
    Edelson, Dana P.
    [J]. CRITICAL CARE MEDICINE, 2016, 44 (02) : 368 - 374
  • [5] A 10-Year Review of Total Hospital- Onset ICU Bloodstream Infections at an Academic Medical Center
    Civitarese, Anna M.
    Ruggieri, Eric
    Walz, J. Matthias
    Mack, Deborah Ann
    Heard, Stephen O.
    Mitchell, Michael
    Lilly, Craig M.
    Landry, Karen E.
    Ellison, Richard T., III
    [J]. CHEST, 2017, 151 (05) : 1011 - 1017
  • [6] Predicting Resistance to Piperacillin-Tazobactam, Cefepime and Meropenem in Septic Patients With Bloodstream Infection Due to Gram-Negative Bacteria
    Cristina Vazquez-Guillamet, M.
    Vazquez, Rodrigo
    Micek, Scott T.
    Kollef, Marin H.
    [J]. CLINICAL INFECTIOUS DISEASES, 2017, 65 (10) : 1607 - 1614
  • [7] Management of bloodstream infections by infection specialists: an international ESCMID cross-sectional survey
    Diallo, Kevin
    Thilly, Nathalie
    Luc, Amandine
    Beraud, Guillaume
    Ergonul, Onder
    Giannella, Maddalena
    Kofteridis, Diamantis
    Kostyanev, Tomislav
    Pano-Pardo, Jose Ramon
    Retamar, Pilar
    Kern, Winfried
    Pulcini, Celine
    [J]. INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2018, 51 (05) : 794 - 798
  • [8] Diekema DJ, 2019, ANTIMICROB AGENTS CH, V63, DOI [10.1128/aac.00355-19, 10.1128/AAC.00355-19]
  • [9] A Machine Learning Algorithm to Predict Severe Sepsis and Septic Shock: Development, Implementation, and Impact on Clinical Practice*
    Giannini, Heather M.
    Ginestra, Jennifer C.
    Chivers, Corey
    Draugelis, Michael
    Hanish, Asaf
    Schweickert, William D.
    Fuchs, Barry D.
    Meadows, Laurie
    Lynch, Michael
    Donnelly, Patrick J.
    Pavan, Kimberly
    Fishman, Neil O.
    Hanson, C. William, III
    Umscheid, Craig A.
    [J]. CRITICAL CARE MEDICINE, 2019, 47 (11) : 1485 - 1492
  • [10] A Clinical Decision Tree to Predict Whether a Bacteremic Patient Is Infected With an Extended-Spectrum β-Lactamase-Producing Organism
    Goodman, Katherine E.
    Lessler, Justin
    Cosgrove, Sara E.
    Harris, Anthony D.
    Lautenbach, Ebbing
    Han, Jennifer H.
    Milstone, Aaron M.
    Massey, Colin J.
    Tamma, Pranita D.
    [J]. CLINICAL INFECTIOUS DISEASES, 2016, 63 (07) : 896 - 903