The Schrodinger equation with singular time-dependent potentials

被引:1
作者
Teismann, H [1 ]
机构
[1] N Dakota State Univ, Dept Math, Fargo, ND 58105 USA
关键词
Schrodinger equation; time-dependent potentials; evolution systems; well-posedness; Strichartz estimates; Lorentz spaces; fractional derivatives; generalized Sobolev spaces; generalized Leibnitz rule;
D O I
10.3934/dcds.2000.6.705
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this note is to extend the theory of (linear) Schrodinger equations with time-dependent potentials developed by K. Yajima [29, 30] to slightly more singular potentials. This is done by proving that the well-known Strichartz estimates for the Schrodinger group remain valid if the usual Lebesgue spaces(1) are replaced by the Lorentz spaces L-p,L-2. Moreover, the regularity of the solutions can be described more precisely by utilizing a generalized Leibniz rule for fractional derivatives.
引用
收藏
页码:705 / 722
页数:18
相关论文
共 31 条
[21]  
LANGE H, 1999, NONLINEAR THEORY GEN
[22]  
Pecher H, 1997, ANN I H POINCARE-PHY, V67, P259
[23]  
Peetre J, 1976, Duke Univ. Math. Ser.
[24]  
Reed M., 1975, Fourier Analysis, Self-Adjointness
[25]  
TEISMANN H, 1997, PHYSICAL APPL MATH A, V1, P433
[26]  
TEISMANN H, 1997, THESIS U KOLN
[27]  
Triebel H., 1978, Interpolation theory, function spaces, differential operators
[28]  
Triebel H., 2010, Theory of Function Spaces
[29]   SCHRODINGER EVOLUTION-EQUATIONS WITH MAGNETIC-FIELDS [J].
YAJIMA, K .
JOURNAL D ANALYSE MATHEMATIQUE, 1991, 56 :29-76
[30]   EXISTENCE OF SOLUTIONS FOR SCHRODINGER EVOLUTION-EQUATIONS [J].
YAJIMA, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 110 (03) :415-426