The Schrodinger equation with singular time-dependent potentials

被引:1
作者
Teismann, H [1 ]
机构
[1] N Dakota State Univ, Dept Math, Fargo, ND 58105 USA
关键词
Schrodinger equation; time-dependent potentials; evolution systems; well-posedness; Strichartz estimates; Lorentz spaces; fractional derivatives; generalized Sobolev spaces; generalized Leibnitz rule;
D O I
10.3934/dcds.2000.6.705
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this note is to extend the theory of (linear) Schrodinger equations with time-dependent potentials developed by K. Yajima [29, 30] to slightly more singular potentials. This is done by proving that the well-known Strichartz estimates for the Schrodinger group remain valid if the usual Lebesgue spaces(1) are replaced by the Lorentz spaces L-p,L-2. Moreover, the regularity of the solutions can be described more precisely by utilizing a generalized Leibniz rule for fractional derivatives.
引用
收藏
页码:705 / 722
页数:18
相关论文
共 31 条
  • [21] LANGE H, 1999, NONLINEAR THEORY GEN
  • [22] Pecher H, 1997, ANN I H POINCARE-PHY, V67, P259
  • [23] Peetre J, 1976, Duke Univ. Math. Ser.
  • [24] Reed M., 1975, Fourier Analysis, Self-Adjointness
  • [25] TEISMANN H, 1997, PHYSICAL APPL MATH A, V1, P433
  • [26] TEISMANN H, 1997, THESIS U KOLN
  • [27] Triebel H., 1978, Interpolation theory, function spaces, differential operators
  • [28] Triebel H., 2010, Theory of Function Spaces
  • [29] SCHRODINGER EVOLUTION-EQUATIONS WITH MAGNETIC-FIELDS
    YAJIMA, K
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 1991, 56 : 29 - 76
  • [30] EXISTENCE OF SOLUTIONS FOR SCHRODINGER EVOLUTION-EQUATIONS
    YAJIMA, K
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 110 (03) : 415 - 426