The Schrodinger equation with singular time-dependent potentials

被引:1
作者
Teismann, H [1 ]
机构
[1] N Dakota State Univ, Dept Math, Fargo, ND 58105 USA
关键词
Schrodinger equation; time-dependent potentials; evolution systems; well-posedness; Strichartz estimates; Lorentz spaces; fractional derivatives; generalized Sobolev spaces; generalized Leibnitz rule;
D O I
10.3934/dcds.2000.6.705
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this note is to extend the theory of (linear) Schrodinger equations with time-dependent potentials developed by K. Yajima [29, 30] to slightly more singular potentials. This is done by proving that the well-known Strichartz estimates for the Schrodinger group remain valid if the usual Lebesgue spaces(1) are replaced by the Lorentz spaces L-p,L-2. Moreover, the regularity of the solutions can be described more precisely by utilizing a generalized Leibniz rule for fractional derivatives.
引用
收藏
页码:705 / 722
页数:18
相关论文
共 31 条
[1]  
[Anonymous], 1971, FOURIER ANAL EUCLIDE
[2]  
Bergh J., 1976, INTERPOLATION SPACES
[3]   Collision integrals for attractive potentials [J].
Bobylev, AV ;
Illner, R .
JOURNAL OF STATISTICAL PHYSICS, 1999, 95 (3-4) :633-649
[4]  
BOHUN CS, 1998, THESIS U VICTORIA
[5]   L2 solutions to the Schrodinger-Poisson system:: Existence, uniqueness, time behaviour, and smoothing effects [J].
Castella, F .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1997, 7 (08) :1051-1083
[6]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[7]  
Cazenave T., 1989, TEXTOS METODOS MATEM, V22
[8]  
CAZENAVE T, 1990, INTRO AUX PROBLEMES
[9]   DISPERSION OF SMALL AMPLITUDE SOLUTIONS OF THE GENERALIZED KORTEWEG-DEVRIES EQUATION [J].
CHRIST, FM ;
WEINSTEIN, MI .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :87-109
[10]  
DIESTEL V, 1977, MATH SURVEYS, V15