Accurate pressure post-process of a finite element method for elastoacoustics

被引:3
作者
Alonso, A
Dello Russo, A
Padra, C
Rodríguez, R
机构
[1] Natl Univ La Plata, Fac Ciencias Exactas, Dept Matemat, RA-1900 La Plata, Argentina
[2] Ctr Atom Bariloche, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[3] Univ Concepcion, Dept Ingn Matemat, Concepcion, Chile
关键词
D O I
10.1007/s00211-004-0523-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a post-process to obtain a more accurate approximation of the fluid pressure from a finite element computation of the vibration modes of a fluid-structure coupled system. The underlying finite element method, based on a displacement formulation for both media, consists of using Raviart-Thomas elements for the fluid combined with standard continuous elements for the solid. An easy to compute post-process of the pressure is derived. The relation between this post-process and an alternative finite element approximation of the problem based on discretizing the fluid pressure by enriched Crouzeix-Raviart elements is studied. Higher order estimates for the L(2) norm of the post-processed pressure are proved by exploiting this relation. As a by-product, higher order L(2) estimates for the solid displacements obtained with the original method are also proved.
引用
收藏
页码:389 / 425
页数:37
相关论文
共 22 条
[1]   A posteriori error estimates in finite element acoustic analysis [J].
Alonso, A ;
Dello Russo, A ;
Vampa, V .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 117 (02) :105-119
[2]  
ARNOLD DN, 1985, RAIRO-MATH MODEL NUM, V19, P7
[3]  
Babuska I., 1991, Finite Element Methods, V2, P641
[4]   A MIXED DISPLACEMENT-BASED FINITE-ELEMENT FORMULATION FOR ACOUSTIC FLUID-STRUCTURE INTERACTION [J].
BATHE, KJ ;
NITIKITPAIBOON, C ;
WANG, X .
COMPUTERS & STRUCTURES, 1995, 56 (2-3) :225-237
[5]   Finite element analysis of a quadratic eigenvalue problem arising in dissipative acoustics [J].
Bermúdez, A ;
Durán, RG ;
Rodríguez, R ;
Solomin, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (01) :267-291
[6]   FINITE-ELEMENT VIBRATION ANALYSIS OF FLUID-SOLID SYSTEMS WITHOUT SPURIOUS MODES [J].
BERMUDEZ, A ;
DURAN, R ;
MUSCHIETTI, MA ;
RODRIGUEZ, R ;
SOLOMIN, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (04) :1280-1295
[7]   Finite element analysis of compressible and incompressible fluid-solid systems [J].
Bermudez, A ;
Duran, R ;
Rodriguez, R .
MATHEMATICS OF COMPUTATION, 1998, 67 (221) :111-136
[8]   FINITE-ELEMENT COMPUTATION OF THE VIBRATION MODES OF A FLUID-SOLID SYSTEM [J].
BERMUDEZ, A ;
RODRIGUEZ, R .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1994, 119 (3-4) :355-370
[9]   Finite element computation of three-dimensional elastoacoustic vibrations [J].
Bermúdez, A ;
Hervella-Nieto, L ;
Rodríguez, R .
JOURNAL OF SOUND AND VIBRATION, 1999, 219 (02) :279-306
[10]  
Conca C., 1995, Fluids And Periodic Structures