2D Graphene/MnO Heterostructure with Strongly Stable Interface Enabling High-Performance Flexible Solid-state Lithium-Ion Capacitors

被引:105
作者
Liu, Wenjie [1 ,2 ]
Zhang, Xiong [1 ,2 ,3 ]
Xu, Yanan [1 ]
Wang, Lei [1 ,2 ]
Li, Zhao [4 ]
Li, Chen [1 ]
Wang, Kai [1 ,2 ,3 ]
Sun, Xianzhong [1 ]
An, Yabin [1 ]
Wu, Zhong-Shuai [3 ,5 ]
Ma, Yanwei [1 ,2 ,6 ]
机构
[1] Chinese Acad Sci, Inst Elect Engn, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Dalian Natl Lab Clean Energy, Dalian 116023, Liaoning, Peoples R China
[4] Shanghai Jiao Tong Univ, Natl Engn Res Ctr Light Alloy Net Forming, State Key Lab Met Matrix Composite, Sch Mat Sci & Engn, Shanghai 200240, Peoples R China
[5] Chinese Acad Sci, State Key Lab Catalysis, Dalian Inst Chem Phys, Dalian 116023, Liaoning, Peoples R China
[6] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450001, Henan, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
electrostatic self-assemblies; flexible; heterostructures; MnO nano-cabbages; lithium-ion capacitors; MNO NANOPARTICLES; CARBON NANOSHEETS; ANODE MATERIALS; STORAGE; SHELL; COMPOSITES; BATTERIES; FRAMEWORK; EFFICIENT; CATHODE;
D O I
10.1002/adfm.202202342
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The delicate structural engineering is widely acknowledged as a powerful tool for boosting the electrochemical performance of conversion-type anode materials for lithium storage. Here, a general electrostatic self-assembly strategy is proposed for the in situ synthesis of MnO nano-cabbages on negatively charged reduced graphene oxide (rGO/MnO). The strong interfacial heterostructure and robust lithium storage mechanism related to fast Li+ diffusion kinetics and high Li-adsorption ability of rGO/MnO heterostructure are confirmed through operando experimental characterizations and theoretical calculation. Owing to the rapid charge transfer, enriched reaction sites, and stable heterostructure, the as-synthesized rGO/MnO anode delivers a high capacity (860 mAh g(-1) at 0.1 A g(-1)), superior rate capability (211 mAh g(-1) at 10 A g(-1)), and cycle stability. Notably, the as-assembled flexible pouch cell of activated carbon//rGO/MnO solid-state lithium-ion capacitors (LICs) possesses an exceptional energy density of 194 Wh kg(-1) and power density of 40.7 kW kg(-1), both of which are among the highest flexible solid-state LICs reported so far. Further, the LICs possess an ultralong life span with approximate to 77.8% retention after 10 000 cycles and extraordinary safety, demonstrative of great potential for practical applications.
引用
收藏
页数:11
相关论文
共 65 条
[1]   A general route for the mass production of graphene-enhanced carbon composites toward practical pouch lithium-ion capacitors [J].
An, Yabin ;
Liu, Tengyu ;
Li, Chen ;
Zhang, Xiong ;
Hu, Tao ;
Sun, Xianzhong ;
Wang, Kai ;
Wang, Chengduo ;
Ma, Yanwei .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (28) :15654-15664
[2]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/nmat3601, 10.1038/NMAT3601]
[3]   Manganese Oxide/Carbon Yolk-Shell Nanorod Anodes for High Capacity Lithium Batteries [J].
Cai, Zhengyang ;
Xu, Lin ;
Yan, Mengyu ;
Han, Chunhua ;
He, Liang ;
Hercule, Kalele Mulonda ;
Niu, Chaojiang ;
Yuan, Zefan ;
Xu, Wangwang ;
Qu, Longbing ;
Zhao, Kangning ;
Mai, Liqiang .
NANO LETTERS, 2015, 15 (01) :738-744
[4]   In situ anchoring MnO nanoparticles on self-supported 3D interconnected graphene scroll framework: A fast kinetics boosted ultrahigh-rate anode for Li-ion capacitor [J].
Chen, Penghui ;
Zhou, Weiya ;
Xiao, Zhuojian ;
Li, Shaoqing ;
Chen, Huiliang ;
Wang, Yanchun ;
Wang, Zibo ;
Xi, Wei ;
Xia, Xiaogang ;
Xie, Sishen .
ENERGY STORAGE MATERIALS, 2020, 33 :298-308
[5]   Peapod-like MnO@Hollow carbon nanofibers film as self-standing electrode for Li-Ion capacitors with enhanced rate capacity [J].
Chen, Zhi-Yuan ;
He, Bin ;
Yan, Dong ;
Yu, Xiao-Fei ;
Li, Wen-Cui .
JOURNAL OF POWER SOURCES, 2020, 472
[6]   Embedding MnO@Mn3O4 Nanoparticles in an N-Doped-Carbon Framework Derived from Mn-Organic Clusters for Efficient Lithium Storage [J].
Chu, Yanting ;
Guo, Lingyu ;
Xi, Baojuan ;
Feng, Zhenyu ;
Wu, Fangfang ;
Lin, Yue ;
Liu, Jincheng ;
Sun, Di ;
Feng, Jinkui ;
Qian, Yitai ;
Xiong, Shenglin .
ADVANCED MATERIALS, 2018, 30 (06)
[7]   Solvent Co-intercalation: An Emerging Mechanism in Li-, Na-, and K-Ion Capacitors [J].
Divya, Madhusoodhanan Lathika ;
Lee, Yun-Sung ;
Aravindan, Vanchiappan .
ACS ENERGY LETTERS, 2021, 6 (12) :4228-4244
[8]   Lithium-Ion and Sodium-Ion Hybrid Capacitors: From Insertion-Type Materials Design to Devices Construction [J].
Dong, Shengyang ;
Lv, Nan ;
Wu, Yulin ;
Zhu, Guoyin ;
Dong, Xiaochen .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (21)
[9]   Excess Li-Ion Storage on Reconstructed Surfaces of Nanocrystals To Boost Battery Performance [J].
Duan, Yandong ;
Zhang, Bingkai ;
Zheng, Jiaxin ;
Hu, Jiangtao ;
Wen, Jianguo ;
Miller, Dean J. ;
Yan, Pengfei ;
Liu, Tongchao ;
Guo, Hua ;
Li, Wen ;
Song, Xiaohe ;
Zhuo, Zengqing ;
Liu, Chaokun ;
Tang, Hanting ;
Tan, Rui ;
Chen, Zonghai ;
Ren, Yang ;
Ling, Yuan ;
Yang, Wanli ;
Wang, Chong-Min ;
Wang, Lin-Wang ;
Lu, Jun ;
Amine, Khalil ;
Pan, Feng .
NANO LETTERS, 2017, 17 (10) :6018-6026
[10]   Oxygen K-edge X-ray Absorption Spectra [J].
Frati, Federica ;
Hunault, Myrtille O. J. Y. ;
de Groot, Frank M. F. .
CHEMICAL REVIEWS, 2020, 120 (09) :4056-4110