Entropy dissipation and long-range interactions

被引:197
作者
Alexandre, R
Desvillettes, L
Villani, C
Wennberg, B
机构
[1] Univ Orleans, MAPMO, F-45067 Orleans 2, France
[2] Ecole Normale Super, Ctr Math & Leurs Applicat, F-94235 Cachan, France
[3] Ecole Normale Super, DMA, F-75230 Paris 05, France
[4] Chalmers Univ Technol, Dept Math, S-541296 Gothenburg, Sweden
关键词
D O I
10.1007/s002050000083
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study Boltzmann's collision operator for long-range interactions, i.e., without Grad's angular cut-off assumption. We establish a functional inequality showing that the entropy dissipation controls smoothness of the distribution function, in a precise sense. Our estimate is optimal, and gives a unified treatment of both the linear and the nonlinear cases. We also give simple and self-contained proofs of several useful results that were scattered in previous works. As an application, we obtain several helpful estimates for the Cauchy problem, and for the Landau approximation in plasma physics.
引用
收藏
页码:327 / 355
页数:29
相关论文
共 36 条
  • [1] On entropic dissipation rate without cutoff
    Alexandre, R
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (03): : 311 - 315
  • [2] On 3D Boltzmann nonlinear operator without cutoff
    Alexandre, R
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (02): : 165 - 168
  • [3] ALEXANDRE R, 1998, RELATED NONHOMOGENEO
  • [4] ALEXANDRE R, 1999, PREPRINT
  • [5] ALEXANDRE R, 1999, SOLUTION MAXWELLIENN
  • [6] ALEXANDRE R, UNPUB BOLTZMANN EQUA
  • [7] ALEXANDRE R, 1999, DEFINITION SOLUTIONS
  • [8] ALEXANDRE R, 1998, 3D BOLTZMANN NONLINE
  • [9] INTERMOLECULAR FORCES OF INFINITE RANGE AND THE BOLTZMANN-EQUATION
    ARKERYD, L
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1981, 77 (01) : 11 - 21
  • [10] Bobylev A., 1988, SOV SCI REV C, V7, P111