Resources required for exact remote state preparation

被引:37
作者
Berry, DW [1 ]
机构
[1] Univ Queensland, Dept Phys, Brisbane, Qld 4072, Australia
[2] Macquarie Univ, Ctr Excellence Quantum Comp Technol, Sydney, NSW 2109, Australia
[3] Univ Calgary, Inst Quantum Informat Sci, Calgary, AB T2N 1N4, Canada
来源
PHYSICAL REVIEW A | 2004年 / 70卷 / 06期
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
D O I
10.1103/PhysRevA.70.062306
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It has been shown [M.-Y. Ye, Y.-S. Zhang, and G.-C. Guo, Phys. Rev. A. 69, 022310 (2004)] that it is possible to perform exactly faithful remote state preparation using finite classical communication and any entangled state with maximal Schmidt number. Here we give an explicit procedure for performing this remote state preparation. We show that the classical communication required for this scheme is close to optimal for remote state preparation schemes of this type. In addition we prove that it is necessary that the resource state have maximal Schmidt number.
引用
收藏
页码:062306 / 1
页数:7
相关论文
共 10 条
[1]   Remote state preparation [J].
Bennett, CH ;
DiVincenzo, DP ;
Shor, PW ;
Smolin, JA ;
Terhal, BM ;
Wootters, WK .
PHYSICAL REVIEW LETTERS, 2001, 87 (07) :77902-1
[2]  
BENNETT CH, QUANTPH0307100
[3]   Optimal remote state preparation [J].
Berry, DW ;
Sanders, BC .
PHYSICAL REVIEW LETTERS, 2003, 90 (05) :4
[4]   Low-entanglement remote state preparation [J].
Devetak, I ;
Berger, T .
PHYSICAL REVIEW LETTERS, 2001, 87 (19) :197901-1
[5]   Simple algorithm for local conversion of pure states [J].
Jensen, JG ;
Schack, R .
PHYSICAL REVIEW A, 2001, 63 (06) :3
[6]   Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity [J].
Lo, HK .
PHYSICAL REVIEW A, 2000, 62 (01)
[7]   Conditions for a class of entanglement transformations [J].
Nielsen, MA .
PHYSICAL REVIEW LETTERS, 1999, 83 (02) :436-439
[8]  
Nielsen MA, 2001, QUANTUM INF COMPUT, V1, P76
[9]   Minimum classical bit for remote preparation and measurement of a qubit [J].
Pati, Arun K. .
Physical Review A - Atomic, Molecular, and Optical Physics, 2001, 63 (01) :014302-014301
[10]   Faithful remote state preparation using finite classical bits and a nonmaximally entangled state [J].
Ye, MY ;
Zhang, YS ;
Guo, GC .
PHYSICAL REVIEW A, 2004, 69 (02) :4