A 3-D covalently crosslinked N-doped porous carbon/holey graphene composite for quasi-solid-state supercapacitors

被引:25
作者
Jia, Shaopei [1 ,2 ]
Zang, Jianbing [1 ]
Tian, Pengfei [1 ]
Zhou, Shuyu [1 ]
Cai, Haixia [1 ]
Tian, Xueqing [1 ]
Wang, Yanhui [1 ]
机构
[1] Yanshan Univ, Sch Mat Sci & Engn, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Hebei, Peoples R China
[2] Zhongyuan Univ Technol, Sch Mat & Chem Engn, Zhengzhou 451191, Henan, Peoples R China
关键词
3-D graphene; N-doped porous carbon; Covalent cross-linking; Supercapacitors; HIGH-PERFORMANCE; ASYMMETRIC SUPERCAPACITORS; HIGH-ENERGY; NITROGEN; FOAM; NANOSPHERES; ACTIVATION; NANOSHEET; ELECTRODE; NETWORKS;
D O I
10.1016/j.micromeso.2019.109796
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
A 3-D covalently crosslinked N-doped porous carbon/holey graphene composite (NPC/HG) was synthesized by carbonizing the precursor mixture of casein, graphene oxide (GO) and KOH. The polypeptide and amino acid produced by hydrolysis of casein in KOH solution could react with GO, which was conducive to the uniform coating of the NPC precursor on GO and the mutual crosslinking of GO. After carbonization, NPC with a high specific surface area was uniformly coated in the two-dimensional plane of graphene, and graphene was bonded into a 3-D structure by the "solder"-NPC, moreover, the KOH was an activator of NPC and also reacted with carbon atoms of GO to form holes in the carbonization process. The NPC/HG-2 showed the high specific surface area of 1135.3 m(2) g(-1), the rich hierarchical pore structure, and the high nitrogen doping amount of 6 at%. Used in the symmetric supercapacitor, the NPC/HG-2 exhibited the energy density of 29.33 Wh kg(-1) at a power density of 42.75 kW kg(-1), lower internal resistance and the excellent rate performance due to its unique internal pore structure. Moreover, the voltage of the NPC/HG-2 symmetric quasi-solid-state supercapacitor was up to 1.4 V.
引用
收藏
页数:8
相关论文
共 36 条
[1]   Short peptide based hydrogels: incorporation of graphene into the hydrogel [J].
Adhikari, Bimalendu ;
Banerjee, Arindam .
SOFT MATTER, 2011, 7 (19) :9259-9266
[2]   On the Gelation of Graphene Oxide [J].
Bai, Hua ;
Li, Chun ;
Wang, Xiaolin ;
Shi, Gaoquan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (13) :5545-5551
[3]   Preparation of Novel 3D Graphene Networks for Supercapacitor Applications [J].
Cao, Xiehong ;
Shi, Yumeng ;
Shi, Wenhui ;
Lu, Gang ;
Huang, Xiao ;
Yan, Qingyu ;
Zhang, Qichun ;
Zhang, Hua .
SMALL, 2011, 7 (22) :3163-3168
[4]   Nitrogen-doped hierarchically porous carbon foam: A free-standing electrode and mechanical support for high-performance supercapacitors [J].
Chen, Jizhang ;
Xu, Junling ;
Zhou, Shuang ;
Zhao, Ni ;
Wong, Ching-Ping .
NANO ENERGY, 2016, 25 :193-202
[5]  
Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/NMAT3001, 10.1038/nmat3001]
[6]   Well-Ordered Oxygen-Deficient CoMoO4 and Fe2O3 Nanoplate Arrays on 3D Graphene Foam: Toward Flexible Asymmetric Supercapacitors with Enhanced Capacitive Properties [J].
Chi, Kai ;
Zhang, Zheye ;
Lv, Qiying ;
Xie, Chuyi ;
Xiao, Jian ;
Xiao, Fei ;
Wang, Shuai .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (07) :6044-6053
[7]   3D Macroporous Graphene Frameworks for Supercapacitors with High Energy and Power Densities [J].
Choi, Bong Gill ;
Yang, MinHo ;
Hong, Won Hi ;
Choi, Jang Wook ;
Huh, Yun Suk .
ACS NANO, 2012, 6 (05) :4020-4028
[8]   Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors [J].
El-Kady, Maher F. ;
Strong, Veronica ;
Dubin, Sergey ;
Kaner, Richard B. .
SCIENCE, 2012, 335 (6074) :1326-1330
[9]   A nanoporous MXene film enables flexible supercapacitors with high energy storage [J].
Fan, Zhimin ;
Wang, Youshan ;
Xie, Zhimin ;
Xu, Xueqing ;
Yuan, Yin ;
Cheng, Zhongjun ;
Liu, Yuyan .
NANOSCALE, 2018, 10 (20) :9642-9652
[10]   A chemical route to graphene for device applications [J].
Gilje, Scott ;
Han, Song ;
Wang, Minsheng ;
Wang, Kang L. ;
Kaner, Richard B. .
NANO LETTERS, 2007, 7 (11) :3394-3398