Development of PM2.5 and NO2 models in a LUR framework incorporating satellite remote sensing and air quality model data in Pearl River Delta region, China

被引:85
作者
Yang, Xiaofan [1 ,2 ,3 ]
Zheng, Yixuan [6 ]
Geng, Guannan [6 ]
Liu, Huan [1 ,2 ,3 ]
Man, Hanyang [1 ,2 ,3 ]
Lv, Zhaofeng [1 ,2 ,3 ]
He, Kebin [1 ,2 ,3 ]
de Hoogh, Kees [4 ,5 ]
机构
[1] Tsinghua Univ, State Key Joint Lab Environm Simulat & Pollut Con, Sch Environm, Beijing 100084, Peoples R China
[2] State Environm Protect Key Lab Sources & Control, Beijing 100084, Peoples R China
[3] Collaborat Innovat Ctr Reg Environm Qual, Beijing 100084, Peoples R China
[4] Swiss Trop & Publ Hlth Inst, Basel, Switzerland
[5] Univ Basel, Basel, Switzerland
[6] Tsinghua Univ, Ctr Earth Syst Sci, Minist Educ, Key Lab Earth Syst Modelling, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
LAND-USE REGRESSION; LONG-TERM EXPOSURE; 11 EUROPEAN COHORTS; POLLUTION CONCENTRATIONS; PARTICULATE MATTER; FINE; HEALTH; MORTALITY; CITIES; AREAS;
D O I
10.1016/j.envpol.2017.03.079
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
High resolution pollution maps are critical to understand the exposure and health effect of local residents to air pollution. Currently, none of the single technologies used to measure or estimate concentrations of pollutants can provide sufficient resolved exposure data. Land use regression (LUR) models were developed to combine ground-based measurements, satellite remote sensing (SRS) and air quality model (AQM), together with geographic and local source related spatial inputs, to generate high resolution pollution maps for both PM2.5 and NO2 in Pearl River Delta (PRD), China. Four sets of LUR models (LUR without SRS or AQM, with SRS only, with AQM only, and with both SRS and AQM), all including local traffic emissions and land use variables, were compared to evaluate the contribution of SRS and AQM data to the performance of LUR models in PRD region. For NO2, the annual model with SRS estimate performed best, explaining 60.5% of the spatial variation. For PM2.5, the annual model with traditional predictor variables without SRS or AQM estimates showed the best performance, explaining 88.4% of the spatial variation. Pollution surfaces at 200 m*200 m resolution were generated according to the best performed models. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:143 / 153
页数:11
相关论文
共 55 条
[1]   The transferability of NO and NO2 land use regression models between cities and pollutants [J].
Allen, Ryan W. ;
Amram, Ofer ;
Wheeler, Amanda J. ;
Brauer, Michael .
ATMOSPHERIC ENVIRONMENT, 2011, 45 (02) :369-378
[2]   The use of wind fields in a land use regression model to predict air pollution concentrations for health exposure studies [J].
Arain, M. A. ;
Blair, R. ;
Finkelstein, N. ;
Brook, J. R. ;
Sahsuvaroglu, T. ;
Beckerman, B. ;
Zhang, L. ;
Jerrett, M. .
ATMOSPHERIC ENVIRONMENT, 2007, 41 (16) :3453-3464
[3]   Long-term exposure to traffic-related air pollution and lung cancer risk [J].
Beelen, Rob ;
Hoek, Gerard ;
van den Brandt, Piet A. ;
Goldbohm, R. Alexandra ;
Fischer, Paul ;
Schouten, Leo J. ;
Armstrong, Ben ;
Brunekreef, Bert .
EPIDEMIOLOGY, 2008, 19 (05) :702-710
[4]   Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe - The ESCAPE project [J].
Beelen, Rob ;
Hoek, Gerard ;
Vienneau, Danielle ;
Eeftens, Marloes ;
Dimakopoulou, Konstantina ;
Pedeli, Xanthi ;
Tsai, Ming-Yi ;
Kunzli, Nino ;
Schikowski, Tamara ;
Marcon, Alessandro ;
Eriksen, Kirsten T. ;
Raaschou-Nielsen, Ole ;
Stephanou, Euripides ;
Patelarou, Evridiki ;
Lanki, Timo ;
Yli-Tuomi, Tarja ;
Declercq, Christophe ;
Falq, Gregoire ;
Stempfelet, Morgane ;
Birk, Matthias ;
Cyrys, Josef ;
von Klot, Stephanie ;
Nador, Gizella ;
Varro, Mihaly Janos ;
Dedele, Audrius ;
Grazuleviciene, Regina ;
Moelter, Anna ;
Lindley, Sarah ;
Madsen, Christian ;
Cesaroni, Giulia ;
Ranzi, Andrea ;
Badaloni, Chiara ;
Hoffmann, Barbara ;
Nonnemacher, Michael ;
Kraemer, Ursula ;
Kuhlbusch, Thomas ;
Cirach, Marta ;
de Nazelle, Audrey ;
Nieuwenhuijsen, Mark ;
Bellander, Tom ;
Korek, Michal ;
Olsson, David ;
Stromgren, Magnus ;
Dons, Evi ;
Jerrett, Michael ;
Fischer, Paul ;
Wang, Meng ;
Brunekreef, Bert ;
de Hoogh, Kees .
ATMOSPHERIC ENVIRONMENT, 2013, 72 :10-23
[5]  
Boersma F., 2010, EGU GEN ASSEMBLY, V12, P7919
[6]   Error analysis for tropospheric NO2 retrieval from space -: art. no. D04311 [J].
Boersma, KF ;
Eskes, HJ ;
Brinksma, EJ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D4)
[7]   Fifteen-Year Global Time Series of Satellite-Derived Fine Particulate Matter [J].
Boys, B. L. ;
Martin, R. V. ;
van Donkelaar, A. ;
MacDonell, R. J. ;
Hsu, N. C. ;
Cooper, M. J. ;
Yantosca, R. M. ;
Lu, Z. ;
Streets, D. G. ;
Zhang, Q. ;
Wang, S. W. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (19) :11109-11118
[8]   Estimating long-term average particulate air pollution concentrations: Application of traffic indicators and geographic information systems [J].
Brauer, M ;
Hoek, G ;
van Vliet, P ;
Meliefste, K ;
Fischer, P ;
Gehring, U ;
Heinrich, J ;
Cyrys, J ;
Bellander, T ;
Lewne, M ;
Brunekreef, B .
EPIDEMIOLOGY, 2003, 14 (02) :228-239
[9]   Mapping urban air pollution using GIS: a regression-based approach [J].
Briggs, DJ ;
Collins, S ;
Elliott, P ;
Fischer, P ;
Kingham, S ;
Lebret, E ;
Pryl, K ;
VAnReeuwijk, H ;
Smallbone, K ;
VanderVeen, A .
INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 1997, 11 (07) :699-718
[10]   Air pollution and health [J].
Brunekreef, B ;
Holgate, ST .
LANCET, 2002, 360 (9341) :1233-1242