Covariance analysis for temporal data, with applications to DNA modelling

被引:0
|
作者
Dryden, Ian [1 ]
Hill, Blake [2 ]
Wang, Hao [3 ]
Laughton, Charles [1 ]
机构
[1] Univ Nottingham, Sch Math Sci, Univ Pk, Nottingham NG7 2RD, England
[2] Univ South Carolina, Dept Stat, Columbia, SC 29208 USA
[3] Prime Quantitat Res LLC, E Lansing, MI 48824 USA
来源
STAT | 2017年 / 6卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
autoregressive; covariance matrix; DNA; non-Euclidean; non-parametric; permutation test; size and shapes; temporal; STATISTICAL-ANALYSIS; MATRICES; RADIATION; DIMENSION; EQUALITY; GAMMA; SHAPE;
D O I
10.1002/sta4.149
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce methodology for analysing the mean size-and-shape and covariance matrix of landmark data that are collected over time. Motivated by a study of DNA damage, we study some permutation-based tests for investigating significant differences in the structure of the mean and the variability/covariance of size and shape of point sets that evolve over time. The covariance matrix tests make use of some recently introduced metrics for comparing covariance matrices. We demonstrate that the tests have the correct significance level in various simulation studies, and we also investigate the relative power of the tests. Finally, we apply the procedures to the DNA datasets, providing practical insights into different types of DNA damage. Copyright (C) 2017 John Wiley & Sons, Ltd.
引用
收藏
页码:218 / 230
页数:13
相关论文
共 50 条
  • [1] Modelling covariance strucutre in the analysis of repeated measures data
    Littell, RC
    Pendergast, J
    Natarajan, R
    STATISTICS IN MEDICINE, 2000, 19 (13) : 1793 - 1819
  • [2] Modelling spatio-temporal data: A new variogram and covariance structure proposal
    Porcu, E.
    Mateu, J.
    Zini, A.
    Pini, R.
    STATISTICS & PROBABILITY LETTERS, 2007, 77 (01) : 83 - 89
  • [3] A new covariance function for spatio-temporal data analysis
    Rao, Tata Subba
    Terdik, Gyorgy
    INTERNATIONAL WORK-CONFERENCE ON TIME SERIES (ITISE 2014), 2014, : 64 - 66
  • [4] Modelling and analysis of data that exhibit temporal decay
    Faddy, MJ
    Jones, MC
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1999, 48 : 229 - 237
  • [5] Covariance Estimation with Projected Data: Applications to CSI Covariance Acquisition and Tracking
    Decurninge, Alexis
    Guillaud, Maxime
    2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 628 - 632
  • [6] Temporal data modelling Conventional and temporal table
    Kvet, Michal
    Lieskovsky, Anton
    Matiasko, Karol
    PROCEEDINGS OF THE 2013 8TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION (ICCSE 2013), 2013, : 452 - 459
  • [7] A new method to build spatio-temporal covariance functions: analysis of ozone data
    Mehdi Omidi
    Mohsen Mohammadzadeh
    Statistical Papers, 2016, 57 : 689 - 703
  • [8] A new method to build spatio-temporal covariance functions: analysis of ozone data
    Omidi, Mehdi
    Mohammadzadeh, Mohsen
    STATISTICAL PAPERS, 2016, 57 (03) : 689 - 703
  • [9] Residual Variance–Covariance Modelling in Analysis of Multivariate Data from Variety Selection Trials
    Joanne De Faveri
    Arūnas P. Verbyla
    Brian R. Cullis
    Wayne S. Pitchford
    Robin Thompson
    Journal of Agricultural, Biological and Environmental Statistics, 2017, 22 : 1 - 22
  • [10] Bayesian covariance regression in functional data analysis with applications to functional brain imaging
    Shamshoian, John
    Marco, Nicholas
    Senturk, Damla
    Jeste, Shafali
    Telesca, Donatello
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2025,