Calculation of momentum distribution function of a non-thermal fermionic dark matter

被引:18
作者
Biswas, Anirban [1 ]
Gupta, Aritra [1 ]
机构
[1] Harish Chandra Res Inst, Chhatnag Rd, Allahabad 211019, Uttar Pradesh, India
来源
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS | 2017年 / 03期
关键词
dark matter theory; cosmology of theories beyond the SM; particle physics - cosmology connection; MASSES;
D O I
10.1088/1475-7516/2017/03/033
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The most widely studied scenario in dark matter phenomenology is the thermal WIMP scenario. Inspite of numerous efforts to detect WIMP, till now we have no direct evidence for it. A possible explanation for this non-observation of dark matter could be because of its very feeble interaction strength and hence, failing to thermalise with the rest of the cosmic soup. In other words, the dark matter might be of non-thermal origin where the relic density is obtained by the so-called freeze-in mechanism. Furthermore, if this non-thermal dark matter is itself produced substantially from the decay of another non-thermal mother particle, then their distribution functions may differ in both size and shape from the usual equilibrium distribution function. In this work, we have studied such a non-thermal (fermionic) dark matter scenario in the light of a new type of U(1)(B-L) model. The U(1)(B-L) model is interesting, since, besides being anomaly free, it can give rise to neutrino mass by Type II see-saw mechanism. Moreover, as we will show, it can accommodate a non-thermal fermionic dark matter as well. Starting from the collision terms, we have calculated the momentum distribution function for the dark matter by solving a coupled system of Boltzmann equations. We then used it to calculate the final relic abundance, as well as other relevant physical quantities. We have also compared our result with that obtained from solving the usual Boltzmann (or rate) equations directly in terms of comoving number density, Y. Our findings suggest that the latter approximation is valid only in cases where the system under study is close to equilibrium, and hence should be used with caution.
引用
收藏
页数:36
相关论文
共 48 条
[11]   Minimal decaying Dark Matter and the LHC [J].
Arcadi, Giorgio ;
Covi, Laura .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2013, (08)
[12]   Higgs potential in the type II seesaw model [J].
Arhrib, A. ;
Benbrik, R. ;
Chabab, M. ;
Moultaka, G. ;
Peyranere, M. C. ;
Rahili, L. ;
Ramadan, J. .
PHYSICAL REVIEW D, 2011, 84 (09)
[13]  
ATLAS CMS collaborations, 2016, arXiv: 1606.02266 [hep-ex], V08
[14]   7 keV scalar dark matter and the anomalous extragalactic x-ray spectrum [J].
Babu, K. S. ;
Mohapatra, Rabindra N. .
PHYSICAL REVIEW D, 2014, 89 (11)
[15]   Phenomenology of the minimal B-L extension of the standard model: Z′ and neutrinos [J].
Basso, Lorenzo ;
Belyaev, Alexander ;
Moretti, Stefano ;
Shepherd-Themistocleous, Claire H. .
PHYSICAL REVIEW D, 2009, 80 (05)
[16]   Applicability of approximations used in calculations of the spectrum of dark matter particles produced in particle decays [J].
Bezrukov, Fedor ;
Gorbunov, Dmitry .
PHYSICAL REVIEW D, 2016, 93 (06)
[17]   Freeze-in production of sterile neutrino dark matter in U(1)B-L model [J].
Biswas, Anirban ;
Gupta, Aritra .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (09)
[18]   Nonthermal two component dark matter model for Fermi-LAT γ-ray excess and 3.55 keV X-ray line [J].
Biswas, Anirban ;
Majumdar, Debasish ;
Roy, Probir .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (04)
[19]   Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC [J].
Chatrchyan, S. ;
Khachatryan, V. ;
Sirunyan, A. M. ;
Tumasyan, A. ;
Adam, W. ;
Aguilo, E. ;
Bergauer, T. ;
Dragicevic, M. ;
Eroe, J. ;
Fabjan, C. ;
Friedl, M. ;
Fruehwirth, R. ;
Ghete, V. M. ;
Hammer, J. ;
Hoch, M. ;
Hoermann, N. ;
Hrubec, J. ;
Jeitler, M. ;
Kiesenhofer, W. ;
Knuenz, V. ;
Krammer, M. ;
Kraetschmer, I. ;
Liko, D. ;
Majerotto, W. ;
Mikulec, I. ;
Pernicka, M. ;
Rahbaran, B. ;
Rohringer, C. ;
Rohringer, H. ;
Schoefbeck, R. ;
Strauss, J. ;
Szoncso, F. ;
Taurok, A. ;
Waltenberger, W. ;
Walzel, G. ;
Widl, E. ;
Wulz, C. -E. ;
Chekhovsky, V. ;
Emeliantchik, I. ;
Litomin, A. ;
Makarenko, V. ;
Mossolov, V. ;
Shumeiko, N. ;
Solin, A. ;
Stefanovitch, R. ;
Gonzalez, J. Suarez ;
Fedorov, A. ;
Korzhik, M. ;
Missevitch, O. ;
Zuyeuski, R. .
PHYSICS LETTERS B, 2012, 716 (01) :30-61
[20]   PRECISION MEASURES OF THE PRIMORDIAL ABUNDANCE OF DEUTERIUM [J].
Cooke, Ryan J. ;
Pettini, Max ;
Jorgenson, Regina A. ;
Murphy, Michael T. ;
Steidel, Charles C. .
ASTROPHYSICAL JOURNAL, 2014, 781 (01)