Effect of Nanogap Morphology on Plasmon Coupling

被引:69
作者
Kim, Minkyu [1 ]
Kwon, Hyuksang [2 ]
Lee, Sungwoon [1 ]
Yoon, Sangwoon [1 ]
机构
[1] Chung Ang Univ, Dept Chem, 84 Heukseok Ro, Seoul 06974, South Korea
[2] Korea Res Inst Stand & Sci, 267 Gajeong Ro, Daejeon 34113, South Korea
基金
新加坡国家研究基金会;
关键词
nanogaps; plasmon coupling; cube-sphere dimers; single particle scattering spectroscopy; ideal nanospheres; GOLD NANOPARTICLES; OPTICAL-PROPERTIES; DIMERS; GROWTH; SPECTROSCOPY; CALIBRATION; RESONANCES; RULER; SHAPE; EDGE;
D O I
10.1021/acsnano.9b06492
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plasmon coupling is the fundamental principle by which the optical resonances in nanoparticle assemblies are tuned. Interactions of plasmons among nanoparticles in close proximity create plasmon coupling modes whose energies are sensitive to the nanogap parameters. Whereas many studies have focused on the gap distances, we herein probe the effect of gap morphology on plasmon coupling. Dimers that are prepared by adsorbing perfectly round ultrauniform Au nanospheres (AuNSs) onto the faces, edges, and vertices of Au nanocubes (AuNCs) present distinctly different nanogap morphologies. Dark-field single-particle scattering spectroscopy reveals that the longitudinal plasmon coupling mode shifts to lower energies as the AuNS forms a nanogap with parts of the AuNC with higher curvature. Simulation spectra are also consistent with this observation. Our calculations indicate that the much larger charge density at the vertex or edge of a AuNC lowers the plasmon coupling energy through the contribution of the Coulomb interaction when the AuNC combines with the AuNS. In comparison, the plasmon energies or anisotropic polarizability along the face, edge, and vertex directions of a AuNC differ only slightly and thus do not cause a shift in the plasmon coupling mode.
引用
收藏
页码:12100 / 12108
页数:9
相关论文
共 54 条
[11]   Plasmons in Strongly Coupled Metallic Nanostructures [J].
Halas, Naomi J. ;
Lal, Surbhi ;
Chang, Wei-Shun ;
Link, Stephan ;
Nordlander, Peter .
CHEMICAL REVIEWS, 2011, 111 (06) :3913-3961
[12]  
Harris N., 2012, ENCY NANOTECHNOLOGY, P1950
[13]   Correlated Structure and Optical Property Studies of Plasmonic Nanoparticles [J].
Henry, Anne-Isabelle ;
Bingham, Julia M. ;
Ringe, Emilie ;
Marks, Laurence D. ;
Schatz, George C. ;
Van Duyne, Richard P. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (19) :9291-9305
[14]   Plasmon Ruler with Angstrom Length Resolution [J].
Hill, Ryan T. ;
Mock, Jack J. ;
Hucknall, Angus ;
Wolter, Scott D. ;
Jokerst, Nan M. ;
Smith, David R. ;
Chilkoti, Ashutosh .
ACS NANO, 2012, 6 (10) :9237-9246
[15]   Nanoparticles Heat through Light Localization [J].
Hogan, Nathaniel J. ;
Urban, Alexander S. ;
Ayala-Orozco, Ciceron ;
Pimpinelli, Alberto ;
Nordlander, Peter ;
Halas, Naomi J. .
NANO LETTERS, 2014, 14 (08) :4640-4645
[16]   The Sensitivity of the Distance Dependent Plasmonic Coupling between Two Nanocubes to their Orientation: Edge-to-Edge versus Face-to-Face [J].
Hooshmand, Nasrin ;
Bordley, Justin A. ;
El-Sayed, Mostafa A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (08) :4564-4570
[17]   Achieving polyhedral nanocrystal growth with systematic shape control [J].
Huang, Michael H. ;
Chiu, Chun-Ya .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (28) :8081-8092
[18]   Comparative Study of Plasmonic Resonances between the Roundest and Randomly Faceted Au Nanoparticles-on-Mirror Cavities [J].
Huh, Ji-Hyeok ;
Lee, Jaewon ;
Lee, Seungwoo .
ACS PHOTONICS, 2018, 5 (02) :413-421
[19]   On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation [J].
Jain, Prashant K. ;
Huang, Wenyu ;
El-Sayed, Mostafa A. .
NANO LETTERS, 2007, 7 (07) :2080-2088
[20]   Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine [J].
Jain, Prashant K. ;
Huang, Xiaohua ;
El-Sayed, Ivan H. ;
El-Sayed, Mostafa A. .
ACCOUNTS OF CHEMICAL RESEARCH, 2008, 41 (12) :1578-1586