Effect of Nanogap Morphology on Plasmon Coupling

被引:69
作者
Kim, Minkyu [1 ]
Kwon, Hyuksang [2 ]
Lee, Sungwoon [1 ]
Yoon, Sangwoon [1 ]
机构
[1] Chung Ang Univ, Dept Chem, 84 Heukseok Ro, Seoul 06974, South Korea
[2] Korea Res Inst Stand & Sci, 267 Gajeong Ro, Daejeon 34113, South Korea
基金
新加坡国家研究基金会;
关键词
nanogaps; plasmon coupling; cube-sphere dimers; single particle scattering spectroscopy; ideal nanospheres; GOLD NANOPARTICLES; OPTICAL-PROPERTIES; DIMERS; GROWTH; SPECTROSCOPY; CALIBRATION; RESONANCES; RULER; SHAPE; EDGE;
D O I
10.1021/acsnano.9b06492
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plasmon coupling is the fundamental principle by which the optical resonances in nanoparticle assemblies are tuned. Interactions of plasmons among nanoparticles in close proximity create plasmon coupling modes whose energies are sensitive to the nanogap parameters. Whereas many studies have focused on the gap distances, we herein probe the effect of gap morphology on plasmon coupling. Dimers that are prepared by adsorbing perfectly round ultrauniform Au nanospheres (AuNSs) onto the faces, edges, and vertices of Au nanocubes (AuNCs) present distinctly different nanogap morphologies. Dark-field single-particle scattering spectroscopy reveals that the longitudinal plasmon coupling mode shifts to lower energies as the AuNS forms a nanogap with parts of the AuNC with higher curvature. Simulation spectra are also consistent with this observation. Our calculations indicate that the much larger charge density at the vertex or edge of a AuNC lowers the plasmon coupling energy through the contribution of the Coulomb interaction when the AuNC combines with the AuNS. In comparison, the plasmon energies or anisotropic polarizability along the face, edge, and vertex directions of a AuNC differ only slightly and thus do not cause a shift in the plasmon coupling mode.
引用
收藏
页码:12100 / 12108
页数:9
相关论文
共 54 条
[1]   Self-assembled flat-faceted nanoparticles chains as a highly-tunable platform for plasmon-enhanced spectroscopy in the infrared [J].
Aguirregabiria, Garikoitz ;
Aizpurua, Javier ;
Esteban, Ruben .
OPTICS EXPRESS, 2017, 25 (12) :13760-13772
[2]   Kinetically Controlled Seeded Growth Synthesis of Citrate-Stabilized Gold Nanoparticles of up to 200 nm: Size Focusing versus Ostwald Ripening [J].
Bastus, Neus G. ;
Comenge, Joan ;
Puntes, Victor .
LANGMUIR, 2011, 27 (17) :11098-11105
[3]  
Brongersma ML, 2015, NAT NANOTECHNOL, V10, P25, DOI [10.1038/NNANO.2014.311, 10.1038/nnano.2014.311]
[4]   Heterodimers: Plasmonic Properties of Mismatched Nanoparticle Pairs [J].
Brown, Lisa V. ;
Sobhani, Heidar ;
Lassiter, J. Britt ;
Nordlander, Peter ;
Halas, Naomi J. .
ACS NANO, 2010, 4 (02) :819-832
[5]   Probing Quantum Plasmon Coupling Using Gold Nanoparticle Dimers with Tunable Interparticle Distances Down to the Subnanometer Range [J].
Cha, Hoon ;
Yoon, Jun Hee ;
Yoon, Sangwoon .
ACS NANO, 2014, 8 (08) :8554-8563
[6]   How Ultranarrow Gap Symmetries Control Plasmonic Nanocavity Modes: From Cubes to Spheres in the Nanoparticle-on-Mirror [J].
Chikkaraddy, Rohit ;
Zheng, Xuezhi ;
Benz, Felix ;
Brooks, Laura J. ;
de Nijs, Bart ;
Carnegie, Cloudy ;
Kleemann, Marie-Elena ;
Mertens, Jan ;
Bowman, Richard W. ;
Vandenbosch, Guy A. E. ;
Moshchalkov, Victor V. ;
Baumbere, Jeremy J. .
ACS PHOTONICS, 2017, 4 (03) :469-475
[7]  
Christopher P, 2011, NAT CHEM, V3, P467, DOI [10.1038/NCHEM.1032, 10.1038/nchem.1032]
[8]   The Morphology of Narrow Gaps Modifies the Plasmonic Response [J].
Esteban, Ruben ;
Aguirregabiria, Garikoitz ;
Borisov, Andrey G. ;
Wang, Yumin M. ;
Nordlander, Peter ;
Bryant, Garnett W. ;
Aizpurua, Javier .
ACS PHOTONICS, 2015, 2 (02) :295-305
[9]   Surfactant (Bi)Layers on Gold Nanorods [J].
Gomez-Grana, Sergio ;
Hubert, Fabien ;
Testard, Fabienne ;
Guerrero-Martinez, Andres ;
Grillo, Isabelle ;
Liz-Marzan, Luis M. ;
Spalla, Olivier .
LANGMUIR, 2012, 28 (02) :1453-1459
[10]   Plasmon Coupling in Silver Nanocube Dimers: Resonance Splitting Induced by Edge Rounding [J].
Grillet, Nadia ;
Manchon, Delphine ;
Bertorelle, Franck ;
Bonnet, Christophe ;
Broyer, Michel ;
Cottancin, Emmanuel ;
Lerme, Jean ;
Hillenkamp, Matthias ;
Pellarin, Michel .
ACS NANO, 2011, 5 (12) :9450-9462