Stochastic Galerkin methods for the steady-state Navier-Stokes equations

被引:18
作者
Sousedik, Bedrich [1 ]
Elman, Howard C. [2 ,3 ]
机构
[1] Univ Maryland Baltimore Cty, Dept Math & Stat, 1000 Hilltop Circle, Baltimore, MD 21250 USA
[2] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA
[3] Univ Maryland, Inst Adv Comp Studies, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
Stochastic Galerkin methods; Navier-Stokes equations; Uncertainty quantification; PARTIAL-DIFFERENTIAL-EQUATIONS; PRECONDITIONER; INTEGRATION;
D O I
10.1016/j.jcp.2016.04.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We study the steady-state Navier-Stokes equations in the context of stochastic finite element discretizations. Specifically, we assume that the viscosity is a random field given in the form of a generalized polynomial chaos expansion. For the resulting stochastic problem, we formulate the model and linearization schemes using Picard and Newton iterations in the framework of the stochastic Galerkin method, and we explore properties of the resulting stochastic solutions. We also propose a preconditioner for solving the linear systems of equations arising at each step of the stochastic (Galerkin) nonlinear iteration and demonstrate its effectiveness for solving a set of benchmark problems. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:435 / 452
页数:18
相关论文
共 28 条
[1]  
[Anonymous], 2010, SCI COMPUT
[2]  
[Anonymous], 2014, FINITE ELEMENTS FAST, DOI DOI 10.1093/ACPROF:OSO/9780199678792.003.0009
[3]   A stochastic collocation method for elliptic partial differential equations with random input data [J].
Babuska, Ivo ;
Nobile, Fabio ;
Tempone, Raul .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (03) :1005-1034
[4]   Smoothed aggregation algebraic multigrid for stochastic PDE problems with layered materials [J].
Brezina, Marian ;
Doostan, Alireza ;
Manteuffel, Tom ;
McCormick, Steve ;
Ruge, John .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2014, 21 (02) :239-255
[5]  
Brezzi F., 1991, Mixed and Hybrid Finite Element Methods, V15
[6]   IFISS: A Computational Laboratory for Investigating Incompressible Flow Problems [J].
Elman, Howard C. ;
Ramage, Alison ;
Silvester, David J. .
SIAM REVIEW, 2014, 56 (02) :261-273
[7]   Reduced Basis Collocation Methods for Partial Differential Equations with Random Coefficients [J].
Elman, Howard C. ;
Liao, Qifeng .
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2013, 1 (01) :192-217
[8]   STOCHASTIC GALERKIN MATRICES [J].
Ernst, Oliver G. ;
Ullmann, Elisabeth .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2010, 31 (04) :1848-1872
[9]   Numerical integration using sparse grids [J].
Gerstner, T ;
Griebel, M .
NUMERICAL ALGORITHMS, 1998, 18 (3-4) :209-232
[10]   The nonlinear Gaussian spectrum of log-normal stochastic processes and variables [J].
Ghanem, R .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1999, 66 (04) :964-973