Coarse-grain modelling of DMPC and DOPC lipid bilayers

被引:73
作者
Orsi, Mario [1 ]
Michel, Julien [1 ]
Essex, Jonathan W. [1 ]
机构
[1] Univ Southampton, Sch Chem, Southampton SO17 1BJ, Hants, England
基金
英国生物技术与生命科学研究理事会;
关键词
SOFT STICKY DIPOLE; LATERAL PRESSURE PROFILES; MOLECULAR-DYNAMICS SIMULATIONS; X-RAY-SCATTERING; WATER PERMEABILITY; PHOSPHOLIPID-MEMBRANES; DIOLEOYLPHOSPHATIDYLCHOLINE BILAYERS; ELECTROSTATIC PROPERTIES; TEMPERATURE-DEPENDENCE; SPONTANEOUS CURVATURE;
D O I
10.1088/0953-8984/22/15/155106
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Our recently developed coarse-grain model for dimyristoylphosphatidylcholine (DMPC) has been improved and extended to dioleylphosphatidylcholine (DOPC), a more typical constituent of real biological membranes. Single-component DMPC and DOPC bilayers have been simulated using microsecond-long molecular dynamics. We investigated properties that are difficult or impossible to access experimentally, such as the pressure distribution, the spontaneous curvature and the diffusion pattern of individual lipid molecules. Moreover, we studied the dipole potential, a basic physical feature of paramount biological importance that cannot be currently modelled by other coarse-grain approaches. In fact, a complete representation of the system electrostatics and a realistic description of the water component make our method unique amongst the existing coarse-grain membrane models. The spontaneous permeation of water, a phenomenon out of reach of standard atomistic models, was also observed and quantified; this was possible thanks to the efficiency of our model, which is about two orders of magnitude less computationally expensive than atomic-level counterparts. Results are generally in good agreement with the literature data. Further model extensions and future applications are proposed.
引用
收藏
页数:15
相关论文
共 96 条