Tau numerical solution of Fredholm integro-differential equations with arbitrary polynomial bases

被引:80
作者
Hosseini, SM [1 ]
Shahmorad, S [1 ]
机构
[1] Tarbiat Modarres Univ, Dept Math, Tehran, Iran
关键词
Tau method; integral; integro-differential equations;
D O I
10.1016/S0307-904X(02)00099-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a method based on the Tau method with arbitrary bases is developed to find the numerical solution of Fredholm integro-differential equations; the differential part appearing in the equation is replaced by its operational Tau representation. Some numerical results are given to demonstrate the superior performance of the Tau method, particularly, with the Chebyshev and Legendre bases. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:145 / 154
页数:10
相关论文
共 19 条
[1]  
Ali Abadi M. H., 1988, Applied Mathematics Letters, V1, P3, DOI 10.1016/0893-9659(88)90163-2
[2]   Numerical treatment of moving and free boundary value problems with the Tau Method [J].
AliAbadi, MH ;
Ortiz, EL .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 35 (08) :53-61
[3]  
ALIABADI MH, 1987, P 2 INT S NUM AN PRA
[4]  
Aliabadi MH., 2000, KOREAN J COMPUT APPL, V7, P673
[5]  
Aliabadi MH., 2000, FAR E J APPL MATH, V4, P295
[6]  
Aliabadi MH., 2000, INT J APPL MATH, V2, P1027
[7]  
Chuong N. M., 1995, ACTA MATH VIETNAM, V20, P85
[8]  
CHUONG NM, 1997, VIETNAM J MATH, V25, P15
[9]   STABILITY RESULTS FOR ONE-STEP DISCRETIZED COLLOCATION METHODS IN THE NUMERICAL TREATMENT OF VOLTERRA INTEGRAL-EQUATIONS [J].
CRISCI, MR ;
RUSSO, E ;
VECCHIO, A .
MATHEMATICS OF COMPUTATION, 1992, 58 (197) :119-134
[10]   Iterated solutions of linear operator equations with the Tau Method [J].
ElDaou, MK ;
Khajah, HG .
MATHEMATICS OF COMPUTATION, 1997, 66 (217) :207-213