Quantum dynamics of polyatomic dissociative chemisorption on transition metal surfaces: mode specificity and bond selectivity

被引:138
作者
Jiang, Bin [1 ,2 ]
Yang, Minghui [3 ]
Xie, Daiqian [4 ,5 ]
Guo, Hua [1 ]
机构
[1] Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA
[2] Univ Sci & Technol China, Dept Chem Phys, Hefei 230026, Peoples R China
[3] Chinese Acad Sci, State Key Lab Magnet Resonance & Atom & Mol Phys, Key Lab Magnet Resonance Biol Syst, Wuhan Ctr Magnet Resonance,Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
[4] Nanjing Univ, Sch Chem & Chem Engn, Key Lab Mesoscop Chem, Inst Theoret & Computat Chem, Nanjing 210093, Jiangsu, Peoples R China
[5] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
POTENTIAL-ENERGY SURFACES; VIBRATIONALLY EXCITED METHANE; SHEPARD INTERPOLATION METHOD; CONTROLLING BIMOLECULAR REACTIONS; CHEMICALLY ACCURATE SIMULATION; STATE-RESOLVED REACTIVITY; DENSITY-FUNCTIONAL THEORY; UNIMOLECULAR RATE THEORY; GAS SHIFT REACTION; CH4; DISSOCIATION;
D O I
10.1039/c5cs00360a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Dissociative chemisorption is the initial and often rate-limiting step in many heterogeneous processes. As a result, an in-depth understanding of the reaction dynamics of such processes is of great importance for the establishment of a predictive model of heterogeneous catalysis. Overwhelming experimental evidence has suggested that these processes have a non-statistical nature and excitations in various reactant modes have a significant impact on reactivity. A comprehensive characterization of the reaction dynamics requires a quantum mechanical treatment on a global potential energy surface. In this review, we summarize recent progress in constructing high-dimensional potential energy surfaces for polyatomic molecules interacting with transition metal surfaces based on the plane-wave density functional theory and in quantum dynamical studies of dissociative chemisorption on these potential energy surfaces. A special focus is placed on the mode specificity and bond selectivity in these gas-surface collisional processes, and their rationalization in terms of the recently proposed Sudden Vector Projection model.
引用
收藏
页码:3621 / 3640
页数:20
相关论文
共 206 条
[1]   Microcanonical unimolecular rate theory at surfaces. II. Vibrational state resolved dissociative chemisorption of methane on Ni(100) [J].
Abbott, HL ;
Bukoski, A ;
Harrison, I .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (08) :3792-3810
[2]   Methane activation on Ni(111):: Effects of poisons and step defects [J].
Abild-Pedersen, F ;
Lytken, O ;
Engbæk, J ;
Nielsen, G ;
Chorkendorff, I ;
Norskov, JK .
SURFACE SCIENCE, 2005, 590 (2-3) :127-137
[3]  
Abufager PN, 2007, PHYS CHEM CHEM PHYS, V9, P2258, DOI 10.1039/b617209a
[4]   Pathways for dissociative methane chemisorption on Pt{110}-(1x2) [J].
Anghel, AT ;
Wales, DJ ;
Jenkins, SJ ;
King, DA .
PHYSICAL REVIEW B, 2005, 71 (11)
[5]  
Baule B, 1914, ANN PHYS-BERLIN, V44, P145
[6]   Comparing the dynamical effects of symmetric and antisymmetric stretch excitation of methane in the Cl+CH4 reaction [J].
Bechtel, HA ;
Camden, JP ;
Brown, DJA ;
Zare, RN .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (11) :5096-5103
[7]   Bond and mode selectivity in the reaction of atomic chlorine with vibrationally excited CH2D2 [J].
Bechtel, HA ;
Kim, ZH ;
Camden, JP ;
Zare, RN .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (02) :791-799
[8]  
Beck R.D., 2013, Dynamics of Gas-Surface Interactions: Atomic-Level Understanding of Scattering Processes at Surfaces
[9]   Vibrational mode-specific reaction of methane on a nickel surface [J].
Beck, RD ;
Maroni, P ;
Papageorgopoulos, DC ;
Dang, TT ;
Schmid, MP ;
Rizzo, TR .
SCIENCE, 2003, 302 (5642) :98-100
[10]   Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations [J].
Behler, Joerg .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (40) :17930-17955