Artificial solid electrolyte interphase coating to reduce lithium trapping in silicon anode for highly stable lithium storage

被引:14
作者
Yan, Jiawei [1 ]
Zhao, Xiliang [1 ]
He, Shenggong [1 ]
Huang, Shimin [1 ]
Qin, Haiqing [2 ]
Lou, Hongtao [3 ]
Hou, Xianhua [1 ,2 ]
机构
[1] South China Normal Univ, Guangdong Engn Technol Res Ctr Efficient Green Ene, Sch Phys & Telecommun Engn, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangzhou 510006, Guangdong, Peoples R China
[2] China Nonferrous Met Guilin Geol & Min Co v, Guangxi Key Lab Superhard Mat, Natl Engn Res Ctr Special Mineral Mat, Guilin 541004, Peoples R China
[3] Guangdong Lingguang New Mat Co Ltd, Zhaoqing 526108, Peoples R China
关键词
ION BATTERY; ELECTROCHEMICAL PROPERTIES; PERFORMANCE; COMPOSITE; LIALO2; LAYER; AL2O3; NANOWIRES; STABILITY;
D O I
10.1016/j.surfin.2022.102029
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon (Si) has been regarded as a commercially viable anode material because of its outstanding theoretical capacity and rich abundance. However, the poor intrinsic electric conductivity, inherent volume expansion, and lithium trapping problems impede further commercialization. Here, we proposed a dual-design strategy by introducing mesoporous carbon and LiAlO2 as an artificial solid electrolyte interphase (SEI) on Si-based anode. The combination of mesoporous carbon and LiAlO2 both improves the structural stability of the Si-based anode and provides a fast diffusion pathway for lithium ions, thus improving the utilization of lithium. Moreover, thanks to the artificial SEI, the Si anode represent a remarkable electrochemical performance, delivering a specific capacity of 1910.3 mAh g(-1) at a current density of 0.2 A g(-1) with capacity retention of 73.4% in 140 cycles and prominent rate capability with a discharge capacity of 795.4 mAh g(-1) at 1.0 A g(-1) in 500 cycles, 456.2 mAh g(-1) at 5.0 A g(-1) in 1000 cycles.
引用
收藏
页数:8
相关论文
共 46 条
[41]  
Wu H, 2012, NAT NANOTECHNOL, V7, P309, DOI [10.1038/nnano.2012.35, 10.1038/NNANO.2012.35]
[42]   Enhancing the Li-ion storage performance of graphite anode material modified by LiAlO2 [J].
Wu, Yan ;
Li, Yi-Fan ;
Wang, Li-Ying ;
Bai, Yu-Jun ;
Zhao, Zhen-Yang ;
Yin, Long-Wei ;
Li, Hui .
ELECTROCHIMICA ACTA, 2017, 235 :463-470
[43]   Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability [J].
Xiang, Hongfa ;
Zhang, Kai ;
Ji, Ge ;
Lee, Jim Yang ;
Zou, Changji ;
Chen, Xiaodong ;
Wu, Jishan .
CARBON, 2011, 49 (05) :1787-1796
[44]   Watermelon-Inspired Si/C Microspheres with Hierarchical Buffer Structures for Densely Compacted Lithium-Ion Battery Anodes [J].
Xu, Quan ;
Li, Jin-Yi ;
Sun, Jian-Kun ;
Yin, Ya-Xia ;
Wan, Li-Jun ;
Guo, Yu-Guo .
ADVANCED ENERGY MATERIALS, 2017, 7 (03)
[45]   Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation [J].
Zhang, Xinghao ;
Wang, Denghui ;
Qiu, Xiongying ;
Ma, Yingjie ;
Kong, Debin ;
Muellen, Klaus ;
Li, Xianglong ;
Zhi, Linjie .
NATURE COMMUNICATIONS, 2020, 11 (01)
[46]   Silicon based lithium-ion battery anodes: A chronicle perspective review [J].
Zuo, Xiuxia ;
Zhu, Jin ;
Mueller-Buschbaum, Peter ;
Cheng, Ya-Jun .
NANO ENERGY, 2017, 31 :113-143