Artificial solid electrolyte interphase coating to reduce lithium trapping in silicon anode for highly stable lithium storage

被引:14
作者
Yan, Jiawei [1 ]
Zhao, Xiliang [1 ]
He, Shenggong [1 ]
Huang, Shimin [1 ]
Qin, Haiqing [2 ]
Lou, Hongtao [3 ]
Hou, Xianhua [1 ,2 ]
机构
[1] South China Normal Univ, Guangdong Engn Technol Res Ctr Efficient Green Ene, Sch Phys & Telecommun Engn, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangzhou 510006, Guangdong, Peoples R China
[2] China Nonferrous Met Guilin Geol & Min Co v, Guangxi Key Lab Superhard Mat, Natl Engn Res Ctr Special Mineral Mat, Guilin 541004, Peoples R China
[3] Guangdong Lingguang New Mat Co Ltd, Zhaoqing 526108, Peoples R China
关键词
ION BATTERY; ELECTROCHEMICAL PROPERTIES; PERFORMANCE; COMPOSITE; LIALO2; LAYER; AL2O3; NANOWIRES; STABILITY;
D O I
10.1016/j.surfin.2022.102029
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon (Si) has been regarded as a commercially viable anode material because of its outstanding theoretical capacity and rich abundance. However, the poor intrinsic electric conductivity, inherent volume expansion, and lithium trapping problems impede further commercialization. Here, we proposed a dual-design strategy by introducing mesoporous carbon and LiAlO2 as an artificial solid electrolyte interphase (SEI) on Si-based anode. The combination of mesoporous carbon and LiAlO2 both improves the structural stability of the Si-based anode and provides a fast diffusion pathway for lithium ions, thus improving the utilization of lithium. Moreover, thanks to the artificial SEI, the Si anode represent a remarkable electrochemical performance, delivering a specific capacity of 1910.3 mAh g(-1) at a current density of 0.2 A g(-1) with capacity retention of 73.4% in 140 cycles and prominent rate capability with a discharge capacity of 795.4 mAh g(-1) at 1.0 A g(-1) in 500 cycles, 456.2 mAh g(-1) at 5.0 A g(-1) in 1000 cycles.
引用
收藏
页数:8
相关论文
共 46 条
[1]   Artificial Solid Electrolyte Interphase Coating to Reduce Lithium Trapping in Silicon Anode for High Performance Lithium-Ion Batteries [J].
Ai, Qing ;
Li, Deping ;
Guo, Jianguang ;
Hou, Guangmei ;
Sun, Qing ;
Sun, Qidi ;
Xu, Xiaoyan ;
Zhai, Wei ;
Zhang, Lin ;
Feng, Jinkui ;
Si, Pengchao ;
Lou, Jun ;
Ci, Lijie .
ADVANCED MATERIALS INTERFACES, 2019, 6 (21)
[2]   Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes [J].
An, Weili ;
Gao, Biao ;
Mei, Shixiong ;
Xiang, Ben ;
Fu, Jijiang ;
Wang, Lei ;
Zhang, Qiaobao ;
Chu, Paul K. ;
Huo, Kaifu .
NATURE COMMUNICATIONS, 2019, 10 (1)
[3]   Recent advances and perspectives of 2D silicon: Synthesis and application for energy storage and conversion [J].
An, Yongling ;
Tian, Yuan ;
Wei, Chuanliang ;
Zhang, Yuchan ;
Xiong, Shenglin ;
Feng, Jinkui ;
Qian, Yitai .
ENERGY STORAGE MATERIALS, 2020, 32 :115-150
[4]   Encasing Prelithiated Silicon Species in the Graphite Scaffold: An Enabling Anode Design for the Highly Reversible, Energy-Dense Cell Model [J].
Bai, Miao ;
Yang, Liyan ;
Jia, Qiurong ;
Tang, Xiaoyu ;
Liu, Yujie ;
Wang, Helin ;
Zhang, Min ;
Guo, Runchen ;
Ma, Yue .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (42) :47490-47502
[5]   Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation [J].
Casimir, Anix ;
Zhang, Hanguang ;
Ogoke, Ogechi ;
Amine, Joseph C. ;
Lu, Jun ;
Wu, Gang .
NANO ENERGY, 2016, 27 :359-376
[6]   Protective coatings on silicon particles and their effect on energy density and specific energy in lithium ion battery cells: A model study [J].
Casino, Simone ;
Niehoff, Philip ;
Boerner, Markus ;
Winter, Martin .
JOURNAL OF ENERGY STORAGE, 2020, 29
[7]   A Micrometer-Sized Silicon/Carbon Composite Anode Synthesized by Impregnation of Petroleum Pitch in Nanoporous Silicon [J].
Chae, Sujong ;
Xu, Yaobin ;
Yi, Ran ;
Lim, Hyung-Seok ;
Velickovic, Dusan ;
Li, Xiaolin ;
Li, Qiuyan ;
Wang, Chongmin ;
Zhang, Ji-Guang .
ADVANCED MATERIALS, 2021, 33 (40)
[8]   Integration of Graphite and Silicon Anodes for the Commercialization of High-Energy Lithium-Ion Batteries [J].
Chae, Sujong ;
Choi, Seong-Hyeon ;
Kim, Namhyung ;
Sung, Jaekyung ;
Cho, Jaephil .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (01) :110-135
[9]   Confronting Issues of the Practical Implementation of Si Anode in High-Energy Lithium-Ion Batteries [J].
Chae, Sujong ;
Ko, Minseong ;
Kim, Kyungho ;
Ahn, Kihong ;
Cho, Jaephil .
JOULE, 2017, 1 (01) :47-60
[10]   Multilayered Si Nanoparticle/Reduced Graphene Oxide Hybrid as a High-Performance Lithium-Ion Battery Anode [J].
Chang, Jingbo ;
Huang, Xingkang ;
Zhou, Guihua ;
Cui, Shumao ;
Hallac, Peter B. ;
Jiang, Junwei ;
Hurley, Patrick T. ;
Chen, Junhong .
ADVANCED MATERIALS, 2014, 26 (05) :758-764