The roles of ethylene and transcription factors in the regulation of onset of leaf senescence

被引:109
作者
Koyama, Tomotsugu [1 ]
机构
[1] Suntory Fdn Life Sci, Bioorgan Res Inst, Osaka, Japan
来源
FRONTIERS IN PLANT SCIENCE | 2014年 / 5卷
关键词
AP2/ERF; ethylene; leaf development; leaf senescence; NAC; transcription factor; TCP; WRKY; ABSCISIC-ACID; JASMONIC ACID; DEFENSE RESPONSES; AUXIN RESPONSE; ARABIDOPSIS; GENE; PROTEIN; EXPRESSION; WRKY53; REPRESSORS;
D O I
10.3389/fpls.2014.00650
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Leaf senescence is the last stage of leaf development and is accompanied by cell death. In contrast to senescence in individual organisms that leads to death, leaf senescence is associated with dynamic processes that include the translocation of nutrients from old leaves to newly developing or storage tissues within the same plant. The onset of leaf senescence is largely regulated by age and internal and external stimuli, which include the plant hormone ethylene. Earlier studies have documented the important role of ethylene in the regulation of leaf senescence. The production of ethylene coincides with the onset of leaf senescence, whereas the application of ethylene to plants induces precocious leaf senescence. Recently, many studies have described the components of ethylene signaling and biosynthetic pathways that are involved in modulating the onset of leaf senescence. Particularly, transcription factors (TFs) integrate ethylene signals with those from environmental and developmental factors to accelerate or delay leaf senescence. This review aims to discuss the regulatory cascade involving ethylene and TFs in the regulation of onset of leaf senescence.
引用
收藏
页数:8
相关论文
共 89 条
  • [1] Abeles FB., 1992, Ethylene in Plant Biology, P56, DOI DOI 10.1016/B978-0-08-091628-6.50010-2
  • [2] ETHYLENE AS A REGULATOR OF SENESCENCE IN TOBACCO LEAF-DISKS
    AHARONI, N
    LIEBERMAN, M
    [J]. PLANT PHYSIOLOGY, 1979, 64 (05) : 801 - 804
  • [3] Genome-wide Insertional mutagenesis of Arabidopsis thaliana
    Alonso, JM
    Stepanova, AN
    Leisse, TJ
    Kim, CJ
    Chen, HM
    Shinn, P
    Stevenson, DK
    Zimmerman, J
    Barajas, P
    Cheuk, R
    Gadrinab, C
    Heller, C
    Jeske, A
    Koesema, E
    Meyers, CC
    Parker, H
    Prednis, L
    Ansari, Y
    Choy, N
    Deen, H
    Geralt, M
    Hazari, N
    Hom, E
    Karnes, M
    Mulholland, C
    Ndubaku, R
    Schmidt, I
    Guzman, P
    Aguilar-Henonin, L
    Schmid, M
    Weigel, D
    Carter, DE
    Marchand, T
    Risseeuw, E
    Brogden, D
    Zeko, A
    Crosby, WL
    Berry, CC
    Ecker, JR
    [J]. SCIENCE, 2003, 301 (5633) : 653 - 657
  • [4] Ay N, 2009, PLANT J, V58, P333, DOI [10.1111/j.0960-7412.2009.03782.x, 10.1111/j.1365-313X.2008.03782.x]
  • [5] Transcription factors regulating leaf senescence in Arabidopsis thaliana
    Balazadeh, S.
    Riano-Pachon, D. M.
    Mueller-Roeber, B.
    [J]. PLANT BIOLOGY, 2008, 10 : 63 - 75
  • [6] ORS1, an H2O2-Responsive NAC Transcription Factor, Controls Senescence in Arabidopsis thaliana
    Balazadeh, Salma
    Kwasniewski, Miroslaw
    Caldana, Camila
    Mehrnia, Mohammad
    Zanor, Maria Ines
    Xue, Gang-Ping
    Mueller-Roeber, Bernd
    [J]. MOLECULAR PLANT, 2011, 4 (02) : 346 - 360
  • [7] A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence
    Balazadeh, Salma
    Siddiqui, Hamad
    Allu, Annapurna D.
    Matallana-Ramirez, Lilian P.
    Caldana, Camila
    Mehrnia, Mohammad
    Zanor, Maria-Ines
    Koehler, Barbara
    Mueller-Roeber, Bernd
    [J]. PLANT JOURNAL, 2010, 62 (02) : 250 - 264
  • [8] WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana
    Besseau, Sebastien
    Li, Jing
    Palva, E. Tapio
    [J]. JOURNAL OF EXPERIMENTAL BOTANY, 2012, 63 (07) : 2667 - 2679
  • [9] High-Resolution Temporal Profiling of Transcripts during Arabidopsis Leaf Senescence Reveals a Distinct Chronology of Processes and Regulation
    Breeze, Emily
    Harrison, Elizabeth
    McHattie, Stuart
    Hughes, Linda
    Hickman, Richard
    Hill, Claire
    Kiddle, Steven
    Kim, Youn-sung
    Penfold, Christopher A.
    Jenkins, Dafyd
    Zhang, Cunjin
    Morris, Karl
    Jenner, Carol
    Jackson, Stephen
    Thomas, Brian
    Tabrett, Alexandra
    Legaie, Roxane
    Moore, Jonathan D.
    Wild, David L.
    Ott, Sascha
    Rand, David
    Beynon, Jim
    Denby, Katherine
    Mead, Andrew
    Buchanan-Wollaston, Vicky
    [J]. PLANT CELL, 2011, 23 (03) : 873 - 894
  • [10] Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis
    Buchanan-Wollaston, V
    Page, T
    Harrison, E
    Breeze, E
    Lim, PO
    Nam, HG
    Lin, JF
    Wu, SH
    Swidzinski, J
    Ishizaki, K
    Leaver, CJ
    [J]. PLANT JOURNAL, 2005, 42 (04) : 567 - 585