Dynamic range in the C. elegans brain network

被引:10
作者
Antonopoulos, Chris G. [1 ]
机构
[1] Univ Essex, Dept Math Sci, Wivenhoe Pk, Colchester CO4 3SQ, Essex, England
关键词
SMALL-WORLD; NEURONS; ORGANIZATION;
D O I
10.1063/1.4939837
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study external electrical perturbations and their responses in the brain dynamic network of the Caenorhabditis elegans soil worm, given by the connectome of its large somatic nervous system. Our analysis is inspired by a realistic experiment where one stimulates externally specific parts of the brain and studies the persistent neural activity triggered in other cortical regions. In this work, we perturb groups of neurons that form communities, identified by the walktrap community detection method, by trains of stereotypical electrical Poissonian impulses and study the propagation of neural activity to other communities by measuring the corresponding dynamic ranges and Steven law exponents. We show that when one perturbs specific communities, keeping the rest unperturbed, the external stimulations are able to propagate to some of them but not to all. There are also perturbations that do not trigger any response. We found that this depends on the initially perturbed community. Finally, we relate our findings for the former cases with low neural synchronization, self-criticality, and large information flow capacity, and interpret them as the ability of the brain network to respond to external perturbations when it works at criticality and its information flow capacity becomes maximal. (C) 2016 AIP Publishing LLC.
引用
收藏
页数:9
相关论文
共 29 条
[1]   Do Brain Networks Evolve by Maximizing Their Information Flow Capacity? [J].
Antonopoulos, Chris G. ;
Srivastava, Shambhavi ;
Pinto, Sandro E. de S. ;
Baptista, Murilo S. .
PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (08)
[2]   Equal Numbers of Neuronal and Nonneuronal Cells Make the Human Brain an Isometrically Scaled-Up Primate Brain [J].
Azevedo, Frederico A. C. ;
Carvalho, Ludmila R. B. ;
Grinberg, Lea T. ;
Farfel, Jose Marcelo ;
Ferretti, Renata E. L. ;
Leite, Renata E. P. ;
Jacob Filho, Wilson ;
Lent, Roberto ;
Herculano-Houzel, Suzana .
JOURNAL OF COMPARATIVE NEUROLOGY, 2009, 513 (05) :532-541
[3]   Combined effect of chemical and electrical synapses in Hindmarsh-Rose neural networks on synchronization and the rate of information [J].
Baptista, M. S. ;
Kakmeni, F. M. Moukam ;
Grebogi, C. .
PHYSICAL REVIEW E, 2010, 82 (03)
[4]   Dynamic range in small-world networks of Hodgkin-Huxley neurons with chemical synapses [J].
Batista, C. A. S. ;
Viana, R. L. ;
Lopes, S. R. ;
Batista, A. M. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 410 :628-640
[5]   Simulation of networks of spiking neurons:: A review of tools and strategies [J].
Brette, Romain ;
Rudolph, Michelle ;
Carnevale, Ted ;
Hines, Michael ;
Beeman, David ;
Bower, James M. ;
Diesmann, Markus ;
Morrison, Abigail ;
Goodman, Philip H. ;
Harris, Frederick C., Jr. ;
Zirpe, Milind ;
Natschlaeger, Thomas ;
Pecevski, Dejan ;
Ermentrout, Bard ;
Djurfeldt, Mikael ;
Lansner, Anders ;
Rochel, Olivier ;
Vieville, Thierry ;
Muller, Eilif ;
Davison, Andrew P. ;
El Boustani, Sami ;
Destexhe, Alain .
JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2007, 23 (03) :349-398
[6]   Concentration tuning mediated by spare receptor capacity in olfactory sensory neurons: A theoretical study [J].
Cleland, TA ;
Linster, C .
NEURAL COMPUTATION, 1999, 11 (07) :1673-1690
[7]   Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina [J].
Deans, MR ;
Volgyi, B ;
Goodenough, DA ;
Bloomfield, SA ;
Paul, DL .
NEURON, 2002, 36 (04) :703-712
[8]   Scale-free brain functional networks -: art. no. 018102 [J].
Eguíluz, VM ;
Chialvo, DR ;
Cecchi, GA ;
Baliki, M ;
Apkarian, AV .
PHYSICAL REVIEW LETTERS, 2005, 94 (01)
[9]   The neural binding problem(s) [J].
Feldman, Jerome .
COGNITIVE NEURODYNAMICS, 2013, 7 (01) :1-11
[10]  
Gerstner W., 2002, Spiking neurons models: single neurons, populations, plasticity