We present an exact analytical solution for the second virial coefficient of a generalized Lennard-Jones type of pair potential model. The potential can be reduced to the Lennard-Jones, hard-sphere, and sticky hard-sphere models by tuning the potential parameters corresponding to the width and depth of the well. Thus, the second virial solution can also regain the aforementioned cases. Moreover, the obtained expression strongly resembles the one corresponding to the Kihara potential. In fact, the F-k functions are the same. Furthermore, for these functions, the complete expansions at low and high temperature are given. Additionally, we propose an alternative stickiness parameter based on the obtained second virial coefficient. (c) 2015 AIP Publishing LLC.
机构:
Univ Pau & Pays Adour, F-64000 Pau, FranceUniv Pau & Pays Adour, F-64000 Pau, France
Santacreu, S. Delage
Galliero, G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pau & Pays Adour, CNRS, UMR 5150, Lab Fluides Complexes & Leurs Reservoirs, F-64013 Pau, France
Univ Pau & Pays Adour, TOTAL, F-64013 Pau, FranceUniv Pau & Pays Adour, F-64000 Pau, France
Galliero, G.
Odunlami, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pau & Pays Adour, CNRS, UMR 5142, Lab Math Appl, F-64013 Pau, FranceUniv Pau & Pays Adour, F-64000 Pau, France
Odunlami, M.
Boned, C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pau & Pays Adour, CNRS, UMR 5150, Lab Fluides Complexes & Leurs Reservoirs, F-64013 Pau, France
Univ Pau & Pays Adour, TOTAL, F-64013 Pau, FranceUniv Pau & Pays Adour, F-64000 Pau, France