Novel 2D Sb2S3 Nanosheet/CNT Coupling Layer for Exceptional Polysulfide Recycling Performance

被引:97
作者
Yao, Shanshan [1 ]
Cui, Jiang [1 ]
Huang, Jian-Qiu [1 ]
Lu, Ziheng [1 ]
Deng, Yang [1 ]
Chong, Woon Gie [1 ]
Wu, Junxiong [1 ]
Ihsan Ul Haq, Muhammad [1 ]
Ciucci, Francesco [1 ,2 ]
Kim, Jang-Kyo [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Hong Kong, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Chem & Biomol Engn, Hong Kong, Peoples R China
关键词
DFT calculations; electrochemical exfoliation; lithium sulfur batteries; polysulfide recycling; Sb2S3; nanosheets; LITHIUM-SULFUR BATTERIES; LI-ION; RATIONAL DESIGN; GRAPHENE; SEPARATOR; ADSORPTION; DIFFUSION; MEMBRANE; CATHODE; NA;
D O I
10.1002/aenm.201800710
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
2D layer-structured materials are considered a promising candidate as a coupling material in lithium sulfur batteries (LSBs) due to their high surface-volume ratio and abundant active binding sites, which can efficiently mitigate shuttling of soluble polysulfides. Herein, an electrochemical Li intercalation and exfoliation strategy is used to prepare 2D Sb2S3 nanosheets (SSNSs), which are incorporated onto a separator in LSBs as a new 2D coupling material for the first time. The cells containing a rationally designed separator which is coated with an SSNS/carbon nanotube (CNT) coupling layer deliver a much improved specific capacity with a remarkable 0.05% decay rate for over 200 cycles at a current density of 2 C. The capability of the SSNSs to entrap polysulfides through their favorable interfacial functionality and the high electrical conductivity of the CNT network facilitates recycling of active materials. The first-principle calculations verify the important roles of SSNSs, which demonstrate ideal binding strengths (1.33-2.14 eV) to entrap Li2Sx as well as a low-energy barrier (189 meV) for Li diffusion. These findings offer new insights into discovering novel coupling layers for high-performance LSBs and shed new light on the application of 2D layer-structured materials in energy storage systems.
引用
收藏
页数:10
相关论文
共 82 条
[11]   Lithium-Sulfur Battery Cable Made from Ultralight, Flexible Graphene/Carbon Nanotube/Sulfur Composite Fibers [J].
Chong, Woon Gie ;
Huang, Jian-Qiu ;
Xu, Zheng-Long ;
Qin, Xianying ;
Wang, Xiangyu ;
Kim, Jang-Kyo .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (04)
[12]   Electrochemically Stable Rechargeable Lithium-Sulfur Batteries with a Microporous Carbon Nanofiber Filter for Polysulfide [J].
Chung, Sheng-Heng ;
Han, Pauline ;
Singhal, Richa ;
Kalra, Vibha ;
Manthiram, Arumugam .
ADVANCED ENERGY MATERIALS, 2015, 5 (18)
[13]   A Polyethylene Glycol-Supported Microporous Carbon Coating as a Polysulfide Trap for Utilizing Pure Sulfur Cathodes in Lithium-Sulfur Batteries [J].
Chung, Sheng-Heng ;
Manthiram, Arumugam .
ADVANCED MATERIALS, 2014, 26 (43) :7352-7357
[14]   Carbonized Eggshell Membrane as a Natural Polysulfide Reservoir for Highly Reversible Li-S Batteries [J].
Chung, Sheng-Heng ;
Manthiram, Arumugam .
ADVANCED MATERIALS, 2014, 26 (09) :1360-1365
[15]   Revealing Pseudocapacitive Mechanisms of Metal Dichalcogenide SnS2/Graphene-CNT Aerogels for High-Energy Na Hybrid Capacitors [J].
Cui, Jiang ;
Yao, Shanshan ;
Lu, Ziheng ;
Huang, Jian-Qiu ;
Chong, Woon Gie ;
Ciucci, Francesco ;
Kim, Jang-Kyo .
ADVANCED ENERGY MATERIALS, 2018, 8 (10)
[16]   Sb-doped SnO2/graphene-CNT aerogels for high performance Li-ion and Na-ion battery anodes [J].
Cui, Jiang ;
Yao, Shanshan ;
Huang, Jian-Qiu ;
Qin, Lei ;
Chong, Woon Gie ;
Sadighi, Zoya ;
Huang, Jiaqiang ;
Wang, Zhenyu ;
Kim, Jang-Kyo .
ENERGY STORAGE MATERIALS, 2017, 9 :85-95
[17]   Recent progress in rational design of anode materials for high-performance Na-ion batteries [J].
Cui, Jiang ;
Yao, Shanshan ;
Kim, Jang-Kyo .
ENERGY STORAGE MATERIALS, 2017, 7 :64-114
[18]   Enhanced conversion reaction kinetics in low crystallinity SnO2/CNT anodes for Na-ion batteries [J].
Cui, Jiang ;
Xu, Zheng-Long ;
Yao, Shanshan ;
Huang, Jiaqiang ;
Huang, Jian-Qiu ;
Abouali, Sara ;
Garakani, Mohammad Akbari ;
Ning, Xiaohui ;
Kim, Jang-Kyo .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (28) :10964-10973
[19]   Localized polyselenides in a graphene-coated polymer separator for high rate and ultralong life lithium-selenium batteries [J].
Fang, Ruopian ;
Zhou, Guangmin ;
Pei, Songfeng ;
Li, Feng ;
Cheng, Hui-Ming .
CHEMICAL COMMUNICATIONS, 2015, 51 (17) :3667-3670
[20]   MoS2/Celgard Separator as Efficient Polysulfide Barrier for Long-Life Lithium-Sulfur Batteries [J].
Ghazi, Zahid Ali ;
He, Xiao ;
Khattak, Abdul Muqsit ;
Khan, Niaz Ali ;
Liang, Bin ;
Iqbal, Azhar ;
Wang, Jinxin ;
Sin, Haksong ;
Li, Lianshan ;
Tang, Zhiyong .
ADVANCED MATERIALS, 2017, 29 (21)