Resonant optical gradient force interaction for nano-imaging and -spectroscopy

被引:43
作者
Yang, Honghua U. [1 ]
Raschke, Markus B.
机构
[1] Univ Colorado, Dept Phys, Dept Chem, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
nano spectroscopy; optical force; near-field optics; INDUCTIVE FORCES; FIELD; MICROSCOPE; PROBE; NANOSCALE; EXPANSION; SPHERE;
D O I
10.1088/1367-2630/18/5/053042
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The optical gradient force provides optomechanical interactions, for particle trapping and manipulation, as well as for near-field optical imaging in scanning probe microscopy. Based on recent spectroscopic experiments, its extension and use for a novel form of chemical scanning probe nano-imaging was proposed. Here, we provide the theoretical basis in terms of spectral behavior, resonant enhancement, and distance dependence of the optical gradient force from numerical simulations in a coupled nanoparticle model geometry. We predict an asymmetric line shape of the optical gradient force for molecular electronic or vibrational resonances, corresponding to the real part of the dielectric function of the sample materials. Yet the line shape can become symmetric and absorptive for collective polaritonic excitations. The corresponding magnitudes of the force range from fN to pN, respectively. The distance dependence scales considerably less steeply than simple point dipole model predictions due to multipole effects. The combination of these characteristics of the optical gradient force offers the chance to experimentally distinguish it from competing processes such as thermal expansion induced forces. In addition we provide a perspective for further resonant enhancement and control of optical forces.
引用
收藏
页数:7
相关论文
共 58 条
[1]   Optical near-field imaging using the Kelvin probe technique [J].
Abe, M ;
Sugawara, Y ;
Sawada, K ;
Andoh, Y ;
Morita, S .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1998, 37 (9AB) :L1074-L1077
[2]   Near-field cavity optomechanics with nanomechanical oscillators [J].
Anetsberger, G. ;
Arcizet, O. ;
Unterreithmeier, Q. P. ;
Riviere, R. ;
Schliesser, A. ;
Weig, E. M. ;
Kotthaus, J. P. ;
Kippenberg, T. J. .
NATURE PHYSICS, 2009, 5 (12) :909-914
[3]   Modeling photonic force microscopy with metallic particles under plasmon eigenmode excitation -: art. no. 115402 [J].
Arias-González, JR ;
Nieto-Vesperinas, M ;
Lester, M .
PHYSICAL REVIEW B, 2002, 65 (11) :1-8
[4]  
Berthelot J, 2014, NAT NANOTECHNOL, V9, P295, DOI [10.1038/nnano.2014.24, 10.1038/NNANO.2014.24]
[5]   Nano-Chemical Infrared Imaging of Membrane Proteins in Lipid Bilayers [J].
Berweger, Samuel ;
Nguyen, Duc M. ;
Muller, Eric A. ;
Bechtel, Hans A. ;
Perkins, Thomas T. ;
Raschke, Markus B. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (49) :18292-18295
[6]   BREAKING THE DIFFRACTION BARRIER - OPTICAL MICROSCOPY ON A NANOMETRIC SCALE [J].
BETZIG, E ;
TRAUTMAN, JK ;
HARRIS, TD ;
WEINER, JS ;
KOSTELAK, RL .
SCIENCE, 1991, 251 (5000) :1468-1470
[7]   Time-averaged total force on a dipolar sphere in an electromagnetic field [J].
Chaumet, PC ;
Nieto-Vesperinas, M .
OPTICS LETTERS, 2000, 25 (15) :1065-1067
[8]   Laser-induced forces in metallic nanosystems: The role of plasmon resonances [J].
Chu, Ping ;
Mills, D. L. .
PHYSICAL REVIEW LETTERS, 2007, 99 (12)
[9]   Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor [J].
Dazzi, A ;
Prazeres, R ;
Glotin, E ;
Ortega, JM .
OPTICS LETTERS, 2005, 30 (18) :2388-2390
[10]   AFM-IR: Combining Atomic Force Microscopy and Infrared Spectroscopy for Nanoscale Chemical Characterization [J].
Dazzi, Alexandre ;
Prater, Craig B. ;
Hu, Qichi ;
Chase, D. Bruce ;
Rabolt, John F. ;
Marcott, Curtis .
APPLIED SPECTROSCOPY, 2012, 66 (12) :1365-1384