Characterization of micron-size hydrogen clusters using Mie scattering

被引:12
作者
Jinno, S. [1 ,2 ]
Tanaka, H. [1 ,3 ]
Matsui, R. [1 ,4 ]
Kanasaki, M. [1 ,5 ]
Sakaki, H. [1 ]
Kando, M. [1 ]
Kondo, K. [1 ]
Sugiyama, A. [1 ]
Uesaka, M. [2 ]
Kishimoto, Y. [4 ]
Fukuda, Y. [1 ,3 ]
机构
[1] Natl Inst Quantum & Radiol Sci & Technol QST, Kansai Photon Sci Inst KPSI, 8-1-7 Umemidai, Kizugawa, Kyoto 6190215, Japan
[2] Univ Tokyo, Nucl Profess Sch, 2-22 Shirakata Shirane, Naka, Ibaraki 3191188, Japan
[3] Kyushu Univ, Interdisciplinary Grad Sch Engn Sci, 6-1 Kasugakoen, Fukuoka 8168580, Japan
[4] Kyoto Univ, Grad Sch Energy Sci, Kyoto 6110011, Japan
[5] Kobe Univ, Grad Sch Maritime Sci, Higashinada Ku, 5-1-1 Fukaeminamimachi, Kobe, Hyogo 6580022, Japan
关键词
PROTON-BEAMS;
D O I
10.1364/OE.25.018774
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Hydrogen clusters with diameters of a few micrometer range, composed of 10(8-10) hydrogen molecules, have been produced for the first time in an expansion of supercooled, high-pressure hydrogen gas into a vacuum through a conical nozzle connected to a cryogenic pulsed solenoid valve. The size distribution of the clusters has been evaluated by measuring the angular distribution of laser light scattered from the clusters. The data were analyzed based on the Mie scattering theory combined with the Tikhonov regularization method including the instrumental functions, the validity of which was assessed by performing a calibration study using a reference target consisting of standard micro-particles with two different sizes. The size distribution of the clusters was found discrete peaked at 0.33 +/- 0 : 03, 0.65 +/- 0 : 05, 0.81 +/- 0.06, 1.40 +/- 0.06 and 2.00 +/- 0.13 mu m in diameter. The highly reproducible and impurity-free nature of the micron-size hydrogen clusters can be a promising target for laser-driven multi-MeV proton sources with the currently available high power lasers. (C) 2017 Optical Society of America
引用
收藏
页码:18774 / 18783
页数:10
相关论文
共 34 条
[1]  
[Anonymous], 1974, Solving least squares problems
[2]  
Bedacht S., 2012, PNIPP25 GSI, P458
[3]   Dynamics of cryogenic jets:: Non-rayleigh breakup and onset of nonaxisymmetric motions [J].
Boukharov, A. V. ;
Buescher, M. ;
Gerasimov, A. S. ;
Chernetsky, V. D. ;
Fedorets, P. V. ;
Maryshev, I. N. ;
Semenov, A. A. ;
Ginevskii, A. F. .
PHYSICAL REVIEW LETTERS, 2008, 100 (17)
[4]   Laser ion acceleration for hadron therapy [J].
Bulanov, S. V. ;
Wilkens, J. J. ;
Esirkepov, T. Zh ;
Korn, G. ;
Kraft, G. ;
Kraft, S. D. ;
Molls, M. ;
Khoroshkov, V. S. .
PHYSICS-USPEKHI, 2014, 57 (12) :1149-1179
[5]   Proton stopping power measurements using high intensity short pulse lasers produced proton beams [J].
Chen, S. N. ;
Atzeni, S. ;
Gauthier, M. ;
Higginson, D. P. ;
Mangia, F. ;
Marques, J-R ;
Riquier, R. ;
Fuchs, J. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2014, 740 :105-106
[6]   Review of laser-driven ion sources and their applications [J].
Daido, Hiroyuki ;
Nishiuchi, Mamiko ;
Pirozhkov, Alexander S. .
REPORTS ON PROGRESS IN PHYSICS, 2012, 75 (05)
[7]   Petawatt class lasers worldwide [J].
Danson, Colin ;
Hillier, David ;
Hopps, Nicholas ;
Neely, David .
HIGH POWER LASER SCIENCE AND ENGINEERING, 2015, 3
[8]  
Even U., 2014, ADV CHEM VOLUME, V2014, P636042, DOI [DOI 10.1155/2014/636042, 10.1155/2014/636042]
[9]   Fast ignition with laser-driven proton and ion beams [J].
Fernandez, J. C. ;
Albright, B. J. ;
Beg, F. N. ;
Foord, M. E. ;
Hegelich, B. M. ;
Honrubia, J. J. ;
Roth, M. ;
Stephens, R. B. ;
Yin, L. .
NUCLEAR FUSION, 2014, 54 (05)
[10]   Compact cryogenic source of periodic hydrogen and argon droplet beams for relativistic laser-plasma generation [J].
Fraga, R. A. Costa ;
Kalinin, A. ;
Kuehnel, M. ;
Hochhaus, D. C. ;
Schottelius, A. ;
Polz, J. ;
Kaluza, M. C. ;
Neumayer, P. ;
Grisenti, R. E. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (02)