Discreteness and rationality of F-jumping numbers on singular varieties

被引:50
作者
Blickle, Manuel [1 ]
Schwede, Karl [2 ]
Takagi, Shunsuke [3 ]
Zhang, Wenliang [2 ]
机构
[1] Univ Duisburg Essen, Fak Math, D-45117 Essen, Germany
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[3] Kyushu Univ, Dept Math, Nishi Ku, Fukuoka 8190395, Japan
基金
美国国家科学基金会;
关键词
BERNSTEIN-SATO POLYNOMIALS; MULTIPLIER IDEALS; TIGHT CLOSURE; CHARACTERISTIC-P; TEST ELEMENTS; D-MODULES; RINGS; THRESHOLDS; COHOMOLOGY; PURITY;
D O I
10.1007/s00208-009-0461-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the F-jumping numbers of the test ideal tau(X; Delta, a(t)) are discrete and rational under the assumptions that X is a normal and F-finite scheme over a field of positive characteristic p, K(X) + Delta is Q-Cartier of index not divisible p, and either X is essentially of finite type over a field or the sheaf of ideals a is locally principal. This is the largest generality for which discreteness and rationality are known for the jumping numbers of multiplier ideals in characteristic zero.
引用
收藏
页码:917 / 949
页数:33
相关论文
共 50 条
[1]   Some results on test elements [J].
Aberbach, IM ;
Maccrimmon, B .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1999, 42 :541-549
[2]   An elementary approach to L-functions mod p [J].
Anderson, GW .
JOURNAL OF NUMBER THEORY, 2000, 80 (02) :291-303
[3]  
[Anonymous], 2004, GEOMETRIC ASPECTS DW
[4]   Multiplier ideals and modules on toric varieties [J].
Blickle, M .
MATHEMATISCHE ZEITSCHRIFT, 2004, 248 (01) :113-121
[5]  
BLICKLE M, 2009, ARXIV09092531V1MATHA
[6]   Discreteness and rationality of F-thresholds [J].
Blickle, Manuel ;
Mustata, Mircea ;
Smith, Karen E. .
MICHIGAN MATHEMATICAL JOURNAL, 2008, 57 :43-61
[7]   Minimal γ-sheaves [J].
Blickle, Manuel .
ALGEBRA & NUMBER THEORY, 2008, 2 (03) :347-368
[8]   F-THRESHOLDS OF HYPERSURFACES [J].
Blickle, Manuel ;
Mustata, Mircea ;
Smith, Karen E. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (12) :6549-6565
[9]   Bernstein-Sato polynomials of arbitrary varieties [J].
Budur, Nero ;
Mustata, Mircea ;
Saito, Morihiko .
COMPOSITIO MATHEMATICA, 2006, 142 (03) :779-797
[10]   Singularities on normal varieties [J].
de Fernex, Tommaso ;
Hacon, Christopher D. .
COMPOSITIO MATHEMATICA, 2009, 145 (02) :393-414