Green-induced infrared absorption in annealed proton-exchanged MgO:LiNbO3 waveguides

被引:4
|
作者
Sun, Jian [1 ]
Xu, Chang-qing [1 ]
机构
[1] McMaster Univ, Dept Engn Phys, Hamilton, ON L8S 4L7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
EFFICIENT 2ND-HARMONIC GENERATION; LITHIUM-NIOBATE; LIGHT GENERATION; HIGH-POWER; LINBO3; RADIATION; POLARONS; DEVICE;
D O I
10.1364/JOSAB.31.002779
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The green-induced infrared absorption (GRIIRA) effect in annealed proton-exchanged (APE) MgO-doped LiNbO3 (MgO:LiNbO3) waveguides was investigated experimentally. By directly measuring the green-light-induced transmittance change in the waveguides, the GRIIRA coefficients of the waveguides were studied at a light power density level of several MW/cm(2). GRIIRA effects in APE MgO:LiNbO3 and nondoped MgO:LiNbO3 waveguides were compared. The GRIIRA-induced temperature gradient from the waveguide core to the ambient environment was simulated using the measured results. Potential impacts of such temperature gradients on MgO:LiNbO3-based green lasers have been discussed. Optimization temperature control methods have also been discussed. (C) 2014 Optical Society of America
引用
收藏
页码:2779 / 2785
页数:7
相关论文
共 50 条
  • [21] Effects of swift argon-ion irradiation on the proton-exchanged LiNbO3 crystal
    黄庆
    刘鹏
    刘涛
    郭沙沙
    王雪林
    Chinese Physics B, 2012, 21 (05) : 441 - 444
  • [22] Tracer diffusion in proton-exchanged congruent LiNbO3 crystals as a function of hydrogen content
    Doerrer, Lars
    Heller, Rene
    Schmidt, Harald
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (26) : 16139 - 16147
  • [23] Effects of swift argon-ion irradiation on the proton-exchanged LiNbO3 crystal
    Huang Qing
    Liu Peng
    Liu Tao
    Guo Sha-Sha
    Wang Xue-Lin
    CHINESE PHYSICS B, 2012, 21 (05)
  • [24] Research of selective etching in Linbo3 using proton-exchanged wet etching technique
    Li, Ying
    Lan, Tian
    Yang, Dengcai
    Xiang, Meihua
    Dai, Jingjing
    Li, Chong
    Wang, Zhiyong
    MATERIALS RESEARCH EXPRESS, 2020, 7 (05)
  • [25] Spectroscopic investigation of proton exchanged Er-doped LiNbO3 waveguides
    Cussó, F
    Lifante, G
    Muñoz, JA
    Cantelar, E
    Nevado, R
    Cino, A
    De Micheli, MP
    Sohler, W
    RADIATION EFFECTS AND DEFECTS IN SOLIDS, 2001, 155 (1-4): : 217 - 221
  • [26] Proton exchanged LiNbO3 optical waveguides:: Nonlinear, electrooptical and photorefractive properties
    Korkishko, YN
    Fedorov, VA
    Baranov, EA
    Alkaev, AN
    Morozova, TV
    Kostritskii, SM
    Laurell, F
    FERROELECTRICS, 2001, 264 (1-4) : 1983 - 1988
  • [27] Proton exchanged LiNbO3 and LiTaO3 optical waveguides and integrated optic devices
    Korkishko, YN
    Fedorov, VA
    Kostritskii, SM
    Alkaev, AN
    Maslennikov, EI
    Paderin, EM
    Apraksin, DV
    Laurell, F
    MICROELECTRONIC ENGINEERING, 2003, 69 (2-4) : 228 - 236
  • [28] Deformations in Ti-diffused proton-exchanged X-cut LiNbO3 waveguide layers
    Shevtsov, D. I.
    Azanova, I. S.
    Taysin, I. F.
    Kalabin, I. E.
    Volynzev, A. B.
    Atuchin, V. V.
    ICONO 2005: NOVEL PHOTONICS MATERIALS: PHYSICS AND OPTICAL DIAGNOSTICS OF NANOSTRUCTURES, 2006, 6258
  • [29] Proton exchanged waveguides in LiNbO3 and LiTaO3 for integrated lasers and nonlinear frequency converters
    Baldi, P
    De Micheli, MP
    El Hadi, K
    Nouh, S
    Cino, AC
    Aschieri, P
    Ostrowsky, DB
    OPTICAL ENGINEERING, 1998, 37 (04) : 1193 - 1202
  • [30] Nonlinear optical properties of different types of proton exchanged LiNbO3 and LiTaO3 waveguides
    Korkishko, YN
    Fedorov, VA
    Kostritskii, SM
    Alkaev, AN
    Maslennikov, EI
    Laurell, F
    INTEGRATED OPTICAL DEVICES: FABRICATION AND TESTING, 2002, 4944 : 268 - 279