Quantifying quantumness and the quest for Queens of Quantum

被引:74
|
作者
Giraud, Olivier [1 ,2 ,3 ,4 ]
Braun, Petr [5 ,6 ]
Braun, Daniel [1 ,2 ]
机构
[1] Univ Toulouse, UPS, Lab Phys Theor IRSAMC, F-31062 Toulouse, France
[2] CNRS, LPT, IRSAMC, F-31062 Toulouse, France
[3] CNRS, LPTMS, F-91405 Orsay, France
[4] Univ Paris 11, UMR8626, F-91405 Orsay, France
[5] Univ Duisburg Essen, Fachbereich Phys, D-47048 Duisburg, Germany
[6] St Petersburg Univ, Inst Phys, St Petersburg 198504, Russia
来源
NEW JOURNAL OF PHYSICS | 2010年 / 12卷
关键词
REPRESENTATION; ENTANGLEMENT; MULTIPOLES; CHARGES; STATES; PHASE;
D O I
10.1088/1367-2630/12/6/063005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a measure of 'quantumness' for any quantum state in a finite-dimensional Hilbert space, based on the distance between the state and the convex set of classical states. The latter are defined as states that can be written as a convex sum of projectors onto coherent states. We derive the general properties of this measure of non-classicality and use it to identify, for a given dimension of Hilbert space, the 'Queen of Quantum' (QQ) states, i.e. the most non-classical quantum states. In three dimensions, we obtain the QQ state analytically and show that it is unique up to rotations. In up to 11-dimensional Hilbert spaces, we find the QQ states numerically, and show that in terms of their Majorana representation they are highly symmetric bodies, which for dimensions 5 and 7 correspond to Platonic bodies.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Uncover quantumness in the crossover from coherent to quantum-correlated phases via photon statistics and entanglement in the Tavis-Cummings model
    Cuartas, J. P. Restrepo
    Vinck-Posada, H.
    OPTIK, 2021, 245
  • [42] Quantifying the source of enhancement in experimental continuous variable quantum illumination
    Ragy, Sammy
    Berchera, Ivano Ruo
    Degiovanni, Ivo P.
    Olivares, Stefano
    Paris, Matteo G. A.
    Adesso, Gerardo
    Genovese, Marco
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2014, 31 (09) : 2045 - 2050
  • [43] Quantifying Early Time Quantum Decoherence Dynamics through Fluctuations
    Gu, Bing
    Franco, Ignacio
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (17): : 4289 - 4294
  • [44] Problem of quantifying quantum correlations with non-commutative discord
    Majtey, A. P.
    Bussandri, D. G.
    Osan, T. M.
    Lamberti, P. W.
    Valdes-Hernandez, A.
    QUANTUM INFORMATION PROCESSING, 2017, 16 (09)
  • [45] Quantifying quantum correlations in fermionic systems using witness operators
    Iemini, Fernando
    Maciel, Thiago O.
    Debarba, Tiago
    Vianna, Reinaldo O.
    QUANTUM INFORMATION PROCESSING, 2013, 12 (02) : 733 - 746
  • [46] Quantifying quantum correlations in a double cavity-magnon system
    Hidki, Abdelkader
    Lakhfif, Abderrahim
    El Qars, Jamal
    Nassik, Mostafa
    EUROPEAN PHYSICAL JOURNAL D, 2022, 76 (04)
  • [47] Quantifying Quantum Correlation of Quasi-Werner State and Probing Its Suitability for Quantum Teleportation
    Chatterjee, Arpita
    Thapliyal, Kishore
    Pathak, Anirban
    ANNALEN DER PHYSIK, 2021, 533 (10)
  • [48] Characterizing and Quantifying Frustration in Quantum Many-Body Systems
    Giampaolo, S. M.
    Gualdi, G.
    Monras, A.
    Illuminati, F.
    PHYSICAL REVIEW LETTERS, 2011, 107 (26)
  • [49] Quantifying Measurement-Induced Disturbance to Distinguish Correlations as Classical or Quantum
    Shu, Yu-Chen
    Lu, Bing-Ze
    Chen, Kui-Yo
    Lin, Matthew M.
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (01)
  • [50] Quantifying nonlocality as a resource for device-independent quantum key distribution
    Camalet, S.
    PHYSICAL REVIEW A, 2020, 102 (01)