Quantifying quantumness and the quest for Queens of Quantum

被引:76
作者
Giraud, Olivier [1 ,2 ,3 ,4 ]
Braun, Petr [5 ,6 ]
Braun, Daniel [1 ,2 ]
机构
[1] Univ Toulouse, UPS, Lab Phys Theor IRSAMC, F-31062 Toulouse, France
[2] CNRS, LPT, IRSAMC, F-31062 Toulouse, France
[3] CNRS, LPTMS, F-91405 Orsay, France
[4] Univ Paris 11, UMR8626, F-91405 Orsay, France
[5] Univ Duisburg Essen, Fachbereich Phys, D-47048 Duisburg, Germany
[6] St Petersburg Univ, Inst Phys, St Petersburg 198504, Russia
关键词
REPRESENTATION; ENTANGLEMENT; MULTIPOLES; CHARGES; STATES; PHASE;
D O I
10.1088/1367-2630/12/6/063005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a measure of 'quantumness' for any quantum state in a finite-dimensional Hilbert space, based on the distance between the state and the convex set of classical states. The latter are defined as states that can be written as a convex sum of projectors onto coherent states. We derive the general properties of this measure of non-classicality and use it to identify, for a given dimension of Hilbert space, the 'Queen of Quantum' (QQ) states, i.e. the most non-classical quantum states. In three dimensions, we obtain the QQ state analytically and show that it is unique up to rotations. In up to 11-dimensional Hilbert spaces, we find the QQ states numerically, and show that in terms of their Majorana representation they are highly symmetric bodies, which for dimensions 5 and 7 correspond to Platonic bodies.
引用
收藏
页数:22
相关论文
共 33 条
[1]  
AGARWAL GS, 1981, PHYS REV A, V24, P2889, DOI 10.1103/PhysRevA.24.2889
[2]   Possible global minimum lattice configurations for Thomson's problem of charges on a sphere [J].
Altschuler, EL ;
Williams, TJ ;
Ratner, ER ;
Tipton, R ;
Stong, R ;
Dowla, F ;
Wooten, F .
PHYSICAL REVIEW LETTERS, 1997, 78 (14) :2681-2685
[3]  
[Anonymous], 1991, QUANTUM SIGNATURES C
[4]  
[Anonymous], 1989, The Emperor's New Mind: Concerning Computers, Minds, and the Laws of Physics
[5]  
Bell J. S., 1964, Physics, V1, P195, DOI [10.1103/physicsphysiquefizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195, 10.1103/Physics-PhysiqueFizika.1.195]
[6]  
Bengtsson I., 2017, GEOMETRY QUANTUM STA, DOI DOI 10.1017/9781139207010
[7]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[8]  
BOYD PS, 2004, CONVEX OPTIMIZATION
[9]  
Chuang I. N., 2000, Quantum Computation and Quantum Information
[10]   Covariance, correlation and entanglement [J].
Davis, RIA ;
Delbourgo, R ;
Jarvis, PD .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (09) :1895-1914